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1. Introduction 

Improving physical training to reduce the attrition rate of military recruits is a high prior-
ity goal of the U.S. military. At present almost 1 in 5 military recruits are lost to 
musculoskeletal injuries or poor performance during physical training. There is also 
concern that the increased reliance on reservists, which requires rapid train-up of these 
individuals, may result in even larger numbers of injuries. These problems are having seri-
ous deleterious effects on the number of deployable soldiers, in addition to the issue of 
medical costs. The high attrition rate is also anticipated to increase in future years due to 
the poor fitness levels and higher body mass index (BMI) values of today’s youth. This 
research effort, sponsored by the Military Operational Medicine Research Program 
(MOMRP) of the US Army Medical Research and Material Command (USAMRMC), 
provided critical model, data, hardware, and software products to assist the MOMRP effort 
to provide research solutions to reduce injuries and improve performance outcomes during 
military training. It focused on the following topics that directly related to improving 
military physical training. 

 Training, Overuse Injury, and Performance (TOP) modeling. Mathematical 
models to predict overuse injuries and performance enhancement during Basic Combat 
Training (BCT) were developed. Through the collaboration with the U.S. Army Research 
Institute of Environmental Medicine (USARIEM) and other military research groups and 
organizations, a number of field study data were obtained from different military training 
programs that involved hundreds to thousands of subjects and reported details including 
training regimen, subject information, occurrence of injuries, and performance PT scores. 
Traditional statistical analysis of the data was first used to identify main risk factors to the 
negative training outcomes. Biomechanical and physiological considerations were then 
introduced in mathematical models using a dose-response concept that quantify each train-
ing activity into biomechanical and physiological doses corresponding to different perform-
ance and injury modalities in consideration. This approach allows combining different exer-
cises during a training program for an objective comparison of different training regimens. 
It also makes it possible to study the effects of changing the activities and to understand 
the progression of performance and injuries during training. 

 Bone stress fracture research. Bone stress fracture is one of the most studied over-
use injuries due to its high occurrence rate and the high cost in both lost days and medical 
expenses. However, the prediction of stress fracture during training remains elusive 
primarily due to the lack of data and the lack of understanding of the underlying physical 
or biological processes. We first focused on reviewing the existing research related to the 



 

mechanisms of injury, and methodologies such as predictive models, risk factors, and the 
diagnostic techniques. It was recognized that (1) while fundamental understanding of bone 
adaptation and failure from the cellular level regulation of bone remodeling due to damage 
accumulation to its macroscopic quantification was still preliminary and controversial, it 
was generally accepted that bone strain is a fundamental variable at macroscopic level to 
both the damage accumulation and the regulation of the bone adaptation; and (2) few exist-
ing risk factors were significant predictors to stress fractures and accurate prediction of 
stress fractures requires accounting for individual bone geometry and material property 
and the exercise history. Efforts were then made to address both these issues: 

1. Through collaboration with ARIEM, we obtained pQCT images of tibia from subjects 
going through training programs. Imaging analysis algorithms were developed to 
identify and segment endosteal and periosteal boundaries of the tibial cortex. Analy-
ses were conducted to look for geometry and density changes during training and 
better individualized image based predictors to stress fractures or bone adaptation.  

2. Finite element models of tibia were developed using individual geometry and bone 
density distributions reconstructed from pQCT images. By applying joint and muscle 
loads that are obtained from measurements or biomechanical model calculations, 
bone stresses and strains during various exercises can be obtained. The calculated 
bone stresses were then related to damage accumulation and bone adaptation to 
predict the likelihood of stress fracture injury if the subject goes through a specific 
training program. 

 Biomechanical modeling. The prediction of both performance and injury outcomes 
requires knowing the loads during exercises that come from solving a variety of 
biomechanical analysis problems using laboratory or field measurements of kinematics and 
kinetics as inputs. On the other hand, human biomechanical systems are highly complex 
nonlinear systems with a large number of interconnected and interacting elements leading 
to significant challenges to model development and integration. To address the issue, a 
versatile biomechanical modeling toolbox, NMS-dynamics, was developed to provide a suite 
of modeling components that can be assembled rapidly to address a majority of 
biomechanical problems. The toolbox was built upon Matlab and the SimMechanics 
software environment. It provides key segment, joint, and muscle elements and supports 
kinematical, inverse dynamic, and forward dynamic analysis. A number of assembled 
application models, such as a lower extremity inverse analysis model customized for 
USARIEM biomechanical laboratory and a head-neck forward analysis model were also 
developed. 

 Mobile biomechanical measurements. The predictive accuracy of training 
outcomes of the current generation of models is significantly limited by the lack of accuracy 



 

in field data, especially the accurate logging of training amount and intensity. This issue 
needs to be addressed by providing ambulatory, unobtrusive instruments that are capable 
of acquiring biomechanical measurements at a resolution sufficient enough for distinguish-
ing different exercise modalities and changes in locomotion patterns due to individual 
variations or changes in individual physical status. In this research, we developed a proto-
type instrument, M-TES DataLogger system, that integrated accelerometers and force 
sensors onto a commercial off-the-shelf (COTS) wireless sensor network (WSN) platform 
and implemented onboard data compression and fusion codes to record biomechanical data 
on a wearable data logger. Analysis algorithms were implemented in companion software 
M-TES Analyzer that estimates from measurements of the biomechanical parameters for 
walking, running, and jumping activities. 

 The chapters in this Part One final report summarize the methods and products 
developed, including publications, models, data, hardware, and software products, for each 
of these research areas.  Technical details are given in Part Two through Part Five of the 
final reports. 

 

 



 

 

2. Training, Overuse Injury, and Performance Modeling 

TTRRAAIINNIINNGG,,  OOVVEERRUUSSEE  IINNJJUURRYY,,  AANNDD  

PPEERRFFOORRMMAANNCCEE  MMOODDEELLIINNGG  
  

Product 
TOP Software version 1.1: 
http://216.55.166.75/Top1.1 

Publications 
B. L. Sih, Weixin Shen, and James H. Stuhmil-

ler. “Overuse Injury Assessment Model,” 
Jaycor Annual Report J3181-03-192, San 
Diego, CA. Apr. 2003.  

M. W. Woodmansee, B. L. Sih, Weixin Shen, 
and E. Niu. “Bone Overuse Injury Assessment 
Model,” Jaycor Annual Report J3181-04-217, 
San Diego, CA. Feb. 2004.  

B. L. Sih and Weixin Shen. “Overuse Injury 
Assessment Model, Part I: Training, Overuse 
Injury, and Performance Modeling,” L-3 
Communications/Jaycor Annual Report 
J3181-06-296, San Diego, CA. Apr. 2006.  

Sih, Bryant L. and Shen, Weixin. “Overuse 
Injury Assessment Model:  Training, Overuse 
Injury, and Performance Modeling,” L-3 
Communications/Jaycor Final Report No. 
J3181-07-336, San Diego, CA. Aug. 2007. 

Sih, Bryant L. “Overuse Injury Assessment 
Model—A biomechanical approach to the 
stress fracture problem,” presented at Supple-
mental Military Conference, 2003 Annual 
Meeting of the American Society of Sports 
Medicine, San Francisco, CA. May 28, 2003.  

Sih, Bryant L. and Shen, Weixin. “Computa-
tional Modeling for Predicting Injuries and 
Physical Performance in Army Basic Combat 
Training—Model Development,” presented at 
TOP Meeting, Natick, MA. Nov 16, 2006.  

Background 
The purpose of basic combat training (BCT) is 
to prepare recruits for the rigors of military life, 
including acquiring a high fitness level. Improv-
ing fitness is accomplished by overloading or 
stressing the body through exercise. However, 
training-related injuries affect about 25% of male 
recruits and about 50% of female recruits, a sig-
nificant portion of which are severe enough to 
force recruits to withdraw from BCT. Addi-
tional attrition occurs when recruits fail to reach 
the desired fitness level (as measured by perform-
ance tests such as the military Physical Fitness 
Test or PFT). Overall, about 1 in 5 recruits fail 
to complete BCT. Thus, there is a need for guid-
ance on minimizing injuries and maximizing 
performance in order to minimize personnel 
losses during BCT.  

Method 
The Training, Overuse Injury, and Performance 
(TOP) Model is a software framework for assess-
ing the effects of physical training on perform-
ance and injury. This is accomplished by inte-
grating biomechanical and physiological based 
injury and performance models to predict the 
training outcomes. The software interface is 
designed to allow users with different functional 
objectives to manage the program and acquire 
the results they desire in an efficient and user–
friendly manner, from an easily accessible web-
based program.  

The TOP model uses a dose-response concept to 
quantify each training activity into biomechani-



 

 

cal and physiological loading doses. By summing 
the total number of doses an individual receives 
during training, a prediction about their per-
formance and risk of injury can be calculated.  

This modeling approach has many advantages 
over other approaches: 

• Provides a better understanding of the influ-
ences that different training regimens have on 
performance and injury outcomes 

• Gives insight into the progression of perfor-
mance improvements and injury risk during 
training 

• Incorporates statistical findings into a mecha-
nistic modeling framework 

• Allows easier incorporation of nonlinear rela-
tionships 

• Dose-response approach allows different train-
ing regimens to be combined and compared 

• Mechanistic model can be applied to more 
different situations compared to a statistical 
model developed by fitting inputs to outputs. 

To provide the widest range of users to access 
the software, four different user types have been 
identified. Depending on the type of user, dif-
ferent levels of software functionality are avail-
able. The current version of TOP incorporates 
two of the four types of users:  

Basic User:  Interested in comparing their indi-
vidual performance progress and injury likeli-
hood during BCT to their peers. The output 
displays their individual scores and the average 
scores of their peers. Likely basics users are indi-
vidual soldiers. 

Mid-Level User: Focused with the perform-
ance and injury outcomes of a small group of 
individuals (2-30) involved in a training 
regimen. The output identifies individuals at 
high risk for performance failure or injury. 
Likely mid-level users are Drill Sergeants and 
fitness advisors. 

 
The data input start page for a Basic User is designed for 

simplicity and consists of only 4 buttons. 

 
The Mid-Level User interface is more complex but flexible, 
allowing users to change parameters such as the regimen 

workload. . 

 
 

The TOP software prediction results for a Basic User, who is 
interested in their likelihood of failing basic combat training 

due to low fitness or injury. 



 

 

 
The different results display for the Mid-Level user, which 

allows the easy identification of personnel who are at 
risk of injury. Performance predictions are presented in 

similar interface (not shown). 

 
 



 

 

3. Bone Stress Fracture Research 

BBOONNEE  SSTTRREESSSS  FFRRAACCTTUURREE  RREESSEEAARRCCHH  
  

Product 
• Matlab algorithms for regional analysis of 

pQCT images 
• Bone stress fracture prediction models : 

http://216.55.166.75/stressfracture/ 
• Patient-specific Finite Element Models of 

17 tibias from the University of Connecti-
cut study 

Publications 
Negus, Charles and Shen, Weixin. “Overuse 

Injury Assessment Model, Part III: Prelimi-
nary pQCT Analysis of Tibia Changes due to 
Physical Exercises,” L-3 Communications/ 
Jaycor Annual Report J3181-06-298, San 
Diego, CA. Apr. 2006 

Evans, R.K., Negus, C.H., et al. “Regional bone 
changes in the tibia resulting from short term 
exercise regimens,” For submission to the J. 
Bone and Mineral Research, 2007. 

Evans, R.K., Negus, C.H., et al. “Regional 
changes in bone mineral density of the tibia 
following a 13-week aerobic training program” 
Presented at the 54th Annual Meeting of the 
ACSM, New Orleans, LA, May 29-June 6, 
2007. 

Negus, C.H., Evans, R.K., et al. “Using pQCT 
to assess regional bone changes resulting from 
short-term exercise interventions.” To be 
presented at the 29th Annual Meeting of the 
ASBMR, Honolulu, Hawaii, 16-19 Sept 2007. 

 

Background 
Bone is a living tissue whose function and adap-
tation are mechanically mediated, and bone 
related diseases often have a mechanical patho-
genesis. Effective diagnosis, intervention, and 
treatment of maladies such as stress fracture 
could greatly benefit from an understanding of 
the mechanical environment that results in vivo 
during normal and atypical physical activity. 
The mechanical stimulus is, however, both 
highly patient and location specific. The goal of 
the bone-related portion of the Overuse Injury 
Modeling project was to develop various compu-
tational methods, using principles from engi-
neering, to perform patient-specific analysis of 
noninvasive, pQCT images and to then begin to 
assess the stress distribution in the tibia on a 
patient specific basis.  

Methods  
Analyze pQCT images received from 
USARIEM using novel Matlab software written 
for this study. 

• Look at subtle regional changes which can 
not be detected using the vendors existing 
analysis software. 

• Report results in peer reviewed journals and 
conferences. 

Extend pQCT analysis capability to a model 
generation capability. 

• Use pQCT images to generate fully 3D, 
patient specific FEA. 



 

 

Illustration 

 
pQCT Analysis:  Images are registered 
(top) and then pre, mid, and post are 

aligned (bottom). 
 

 
 

 
 
pQCT Results: University of Connecticut 
Study:  Regional density changes found 

using image analysis 
 

Level I:  TOP Screening 

 
 
 
Level II:  Patient Specific FEA for higher risk recruits 

  
 
 
 
 
 
 
 
 

Two level screening prior to BCT:  Level I:  
TOP; Level II:  Patient Specific FEA 
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pQCT 
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3D Surface 
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4. Biomechanical Modeling 

NNMMSS--DDYYNNAAMMIICCSS  
  

Product 
NMS-Dynamics Analysis 1.0 desktop applica-
tion 

Publications 
Overuse Injury Assessment Model, Part IV: 

NMS-Dynamics, Kofi Amankwah, Weixin 
Shen, Final Report, J3181-07-338, August 2007 

Overuse Injury Assessment Model, Part II: 
NMS-biodynamics—A Biomechanical Model-
ing Toolbox, Kofi Amankwah, Weixin Shen, 
Annual Report J3181-06-297, April 2006 

Background 
The modeling, simulation, and analysis of the 
human neuromuscular system have become an 
increasingly important area of research. This has 
been driven by two factors: the basic desire to 
understand the fundamental mechanisms of the 
neuromuscular system, and by the increasing 
desire to improve health and reduce injuries to 
humans by optimizing products and physical 
training used by them. For the military, the 
desire to improve health and reduce injuries is a 
continual challenge. Military researchers face 
challenges to develop better equipment, improve 
training regimens, and design better methods to 
assess the health status of soldiers. 

Biomechanical modeling has become an impor-
tant part of understanding the human neuro-
muscular and skeletal systems. With modeling, 
the human body is represented with sets of 
mathematical relationships and related parame-
ters. Utilizing computer simulations, models can 
simulate various scenarios to examine the impact 

of these scenarios on body health and perform-
ance. In addition, by varying the model parame-
ters during a simulation a better understanding 
can be gained of the underlying mechanisms of 
the neuromuscular system, and the influence of 
those mechanisms on the health and perform-
ance of the body. Accordingly, the advantages of 
modeling are that many more tests can be 
performed rapidly, with fewer resources, and 
with less risk to subjects. Biomechanical models 
however, must be developed and validated 
against experimental data to ensure their results 
are credible. 

Method 
The NeuroMuscular Skeletal Biodynamics 
(NMS-Biodynamics) toolbox is a software appli-
cation for rapidly building human biomechani-
cal models. The toolbox is a block programming 
language that allows users to develop biome-
chanical models by connecting blocks represent-
ing bones, joints, muscles, and passive tissues 
(e.g. ligaments). These models can be utilized to 
analyze experimental data and to simulate novel 
scenarios. 

The toolbox can be applied in two manners. The 
toolbox can be utilized by users developing their 
own models. The user can then specify the block 
parameters and simulate the model under vari-
ous conditions such as walking or running. This 
rapid development and simulation of biome-
chanical models enables the user to focus their 
time on answering their biomechanical questions 
and spend less time developing the model. 



 

 

The second way the tool can be employed is 
custom application development for a customer, 
such as NMS-Dynamics Analysis 1.0. The devel-
oper can use the toolbox to build the underlying 
model for their customer and then build an 
interface for the customer to easily interact with 
the model. As a result, the customer does not 
spend time building a tool, but instead spends 
their time employing the tool to answer their 
particular question. 

Toolbox features include: 

• Modular design allows for rapid develop-
ment of models  

• Application develops the equations of 
motion for the user  

• Built on the Matlab Simulink engine, which 
fully integrates with Matlab software  

• Solves kinematic, inverse dynamic, forward 
dynamic, and muscle force sharing problems 

Illustration 

  
Developing a head neck model to simulate the effects of 
different impacts on the neck while wearing different 
helmets 

NMS-Dynamics toolbox employed to build head 
neck model that accepts acceleration inputs at the 
T1 segment 

NMS-Dynamics Analysis 1.0 application provides a 
graphical user interface (GUI) to the model, which 
allows user to easily set up and simulate different 
acceleration impacts to the head neck model 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From walking experiment to desktop application, using 
the experimental data to build a model and an interface 
to access the model 

Kinematic data recorded
for a subject is utilized to
develop an inverse
dynamic model for walking 

NMS-Dynamics Analysis 1.0 application provides a 
GUI to the model, which allows user to easily set 
up and simulate the walking model for different 
subjects 

NMS-Dynamics toolbox used to build model and 
develop algorithm for scaling data to allow 
simulating subjects of different heights, weights, 
and walking speeds 



Research Area:  THIS WILL BE DETERMINED LATER 
 

 

5. Ambulatory Biomechanical Measurement 

MMOOBBIILLEE  BBIIOOMMEECCHHAANNIICCAALL  
MMEEAASSUURRIINNGG  SSYYSSTTEEMM  

  

Product 
• Mobile Training and Exercise System (M-

TES) Data Logger 1.0 

• M-TES Analyzer 1.0 

Publications 
Overuse Injury Assessment Model, Part V: 

Mobile Biomechanical Measuring System, 
Weixin Shen, Kofi Amankwah, Eugene Niu, 
Jonathan Zhang, Final Report J3181-07-339, 
August 2007 

Background 
Military physical training programs involve a 
number of activities to improve the health and 
performance of the soldier. A constant challenge 
is designing programs to maximize the individ-
ual’s performance while minimizing the risk of a 
training injury. Currently some information 
about training regimens is manually recorded. 
However the inconsistency of these records and 
the insufficient information at the level of the 
individual make it difficult to accurately model 
the effects of a training regimen on an individ-
ual. The Mobile Training and Exercise System 
(M-TES) provides a method to address this prob-
lem. 

The goal of developing the M-TES device is to 
provide the ability to wirelessly measure and 
record the activities of an individual in the field. 
The activities would include walking and 
running over different terrains and elevations, 
and jumping over obstacles. In addition the M-
TES software would analyze the data to deter-

mine the activities performed and calculate 
biomechanical metrics for each activity. 

Hardware Challenges 

• Sampling the sensors sufficiently fast 
• Having adequate bandwidth for transmit-

ting data to the base station 
• Providing scalability so that more or differ-

ent sensors could be added to the system 
Software Challenges 
• Storing the data in an efficient manner 
• Analyzing the data to properly reconstruct 

and classify the activities 

Method 
The M-TES hardware consists of two sensor 
units, a data logging base station, and a software 
program to analyze the recorded data. The two 
sensor units are worn on the ankles and each 
contains a biaxial accelerometer which measures 
accelerations in the vertical and forward direc-
tions. A force sensor is also attached to the 
sensor unit to measure the force under the heel 
of the foot. The data recorded by the sensor 
units are transmitted to the base station where 
they are stored. The base station employs flash 
memory to store the data until the data can be 
downloaded to a computer for analysis. The M-
TES Analyzer program uses the data to recon-
struct and classify the movements of the user, 
and calculate biomechanical metrics such as 
walking speed and stride length. 

The current system utilizes motes (Mica2dot and 
Mica2, Crossbow Technologies, www.xbow. 



Research Area:  THIS WILL BE DETERMINED LATER 
 

 

com) as the processor platform to acquire the 
measurements and to wirelessly transmit them 
to the base station. The motes are capable of 
sampling frequency sufficient to capture the 
motions of the user. Bandwidth however, was 
limited and will be improved in the future. 
Motes are designed to work with other motes to 
form wireless sensor networks (WSNs), so 
scaling the system will be a straightforward 
process. 

To store the data efficiently, a Fourier transform 
method is used to compress the data so that the 
full measurements can be reconstructed for later 
biomechanical analysis. This method allows for 
at least a 50% reduction in the storage space 
required.  

To analyze the reconstructed data, the Analyzer 
program contains algorithms to classify the data 
into activities and then calculate biomechanical 
metrics for each of the activities. For example, 
the algorithms might determine the user was 
walking during a certain period of time and 
from that data determine the walking speed of 
the user. 

Illustration 

 
Illustration of a user wearing the M-TES device  

 
M-TES hardware components  

 

 
Example of raw and filtered acceleration data from 
one ankle sensor. The activity was classified as 
walking and each step has been highlighted. 

Wireless  
sensor Wireless  

data logger  

Data logger wirelessly 
receives data from the ankle 

 

Wireless ankle sensor, which 
include a biaxial 
accelerometer oriented with 
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Executive Summary 

 The purpose of basic combat training (BCT) is to prepare recruits for the rigors of 
military life, including acquiring a high fitness level. Improving fitness is accomplished by 
overloading or stressing the body through exercise. Unfortunately, about 1 in 5 recruits fail 
to complete BCT due to injury or low performance. Thus, there is a need for guidance on 
minimizing injuries and maximizing performance in order to minimize personnel losses 
during BCT.  

 The motivation for a novel prediction tool that can analyze different training regimens 
and populations stem from limitations of currently employed statistical methods. These 
include the inability to identify the relative importance of individual training activities and 
the difficulty in combining data from different sources. Plus, statistical methods are limited 
by the amount of available data. Most importantly, the results from statistically-based 
analyses are only applicable to the similar populations and training regimens, offering no 
guidance or predictability for different scenarios or the time course of injury rates and 
performance changes.  

 A better method is to develop mechanistic models that account for training activities 
and individual characteristics in a manner consistent with known physiological phenome-
non (i.e., using biomechanical and biological principles). To simplify the model development 
while still capturing the overall exercise response, a dose-response framework was used to 
quantify training activities and predict outcome in a physiologically meaningful way. The 
inputs to the models are training regimen details and individual characteristics such as 
height and weight. These are used to estimate a “dose” based on known training enhance-
ment principles and injury risk factors found in the literature. The “response” is also based 
on known principles found in the literature that relate training to injury risk and perform-
ance enhancement.  

 The models were optimized and validated with existing BCT datasets and were found 
to have similar accuracy as traditional statistical methods. The results support the devel-
opment of dose-response models for predicting training performance outcomes. In most 
cases, the models performed similarly or better than a traditional statistical method. In 
situations where this was not the case, the difference was small and we anticipate that the 
Training, Overuse Injury, and Performance (TOP) model accuracy will uphold better 
against additional datasets. We also anticipate further improvements with better personnel 
and training measurements.  

 To facilitate the use of the performance and injury models, a web-based software 
program that incorporated the models was implemented. The objective of the software was 
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to demonstrate the feasibility of the models as a tool to help reduce injuries and maximize 
performance. The TOP software package is the result of this effort. This document describes 
development up to TOP 1.1, the version of the software completed in August 2007. The TOP 
package contains the three performance and two injury models (push-up, sit-up, run, stress 
fracture, and overuse injury). 

 Two user types were implemented— a Basic User or individual and a Mid-Level User 
or someone who is responsible for the fitness of small groups of people (10-20 people). Since 
the Basic and Mid-Level User have different requirements, different software interfaces 
have been designed to allow these users to enter data, run the TOP models, and view 
results easily in the context they desire. Additional user types to address the needs of 
Commanders, who are interested in the outcome from a large group of individuals, and 
researchers, who would be interested in accessing some of TOP 1.1’s model algorithms 
directly, are planned for future TOP versions. 

 In addition, several subprograms were developed to increase the utility of the 
program for individual user’s and researchers alike. This included body fat compliance and 
APFT score calculators as well as BCT background information. Also, password-protected 
access to the datasets used to derive the models was implemented.  

 In summary, the TOP models developed were found to have a similar accuracy to a 
statistical method commonly used in performance and injury prediction. In addition, soft-
ware was designed and implemented that incorporated the models as a demonstration of 
the feasibility of the project in helping improve fitness and reduce injuries through the 
identification of high risk individuals and regimen optimization.  
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1. Introduction 

 The purpose of basic combat training (BCT) is to prepare recruits for the rigors of 
military life, including acquiring a high fitness level. Improving fitness is accomplished by 
overloading or stressing the body through exercise. However, training-related injuries affect 
about 25% of male recruits and about 50% of female recruits, a significant portion of which 
are severe enough to force recruits to withdraw from BCT. Additional attrition occurs when 
recruits fail to reach the desired fitness level (as measured by performance tests such as the 
military Physical Fitness Test or PFT). Overall, about 1 in 5 recruits fail to complete BCT. 
Thus, there is a need for guidance on minimizing injuries and maximizing performance in 
order to minimize personnel losses during BCT.  

 The primary goal of this project is to design and implement a framework for assessing 
the effects of physical training on performance and injury. To assess training effects, 
physiologically- and biomechanically-based models were combined with statistical methods 
to address the following objectives: 

• Predict Army Physical Fitness (APFT) results 

• Identify “high risk” individuals 

• Guidance for modification of training regimens 

• Compare training regimens 

 While these prediction models are required to assess training outcome, the use of the 
models by the military community is limited because of their complexity. To address this 
issue, the models (and some additional value-added features) were incorporated into a soft-
ware package. The primary goals of the software package are:  

• Efficient and user-friendly software interface for underlying complex models 

• Allows users to easily manage software and view model prediction results 

• Multiple interfaces to accommodate different user requirements 

 The Training, Overuse Injury, and Performance (TOP) software package is the result 
of the effort to assess physical training and create a tool to be a benefit to the military 
community. This document describes work up to TOP 1.1, the version of the software com-
pleted in July 2007.  



2. Performance & Injury Models 

2.1 Model Development 
 Any prediction tool developed requires input variables such as recruit’s anthropome-
try and training regimen from which performance and injury output variables can be pre-
dicted. How the input variables are used to derive a prediction (i.e., an algorithm) depends 
on the modeling method chosen.  

2.1.1 Modeling Approach 
 In general, there are two basic methods from which injury and performance prediction 
schemes can be derived, neither of which are appropriate from a practical point of view. A 
purely statistical approach derives statistical relationships between the input variables and 
observed outcomes from field data. However, as covered earlier, this method is only appli-
cable to situations and populations from which the analyses were based, severely limiting 
the utility of this method. The other method is a physiologically-based computational model 
where the full pathway leading to the training outcomes is derived from known biological 
principles that directly account for effects of input variables. While this method has the 
potential to be more robust and accurate, it is impractical as a prediction tool—the algo-
rithms are very complex, with too many input parameters to measure on a large group of 
subjects in the field.  

 The approach utilized in the TOP Model project is to incorporate simplified 
biomechanical and physiological models using input variables identified by the statistical 
model. This allows the limited use of computational modeling to increase the robustness 
and accuracy of a statistical approach. To accomplish this, two key modeling components 
are introduced: a dosage amount and a response model. The dosage is an intermediate vari-
able that is more fundamentally related to training outcomes than those that can be easily 
identified or measured. For example, VO2 or oxygen consumption is used as a dosage for the 
run performance model described in Sih and Shen (2006). This is the quantity that allows 
the model to account for different exercises based upon their “equivalent effects” (in terms 
of VO2 or other dosage measures). The proposed response models are purposefully simple 
yet representative of the underlying mechanisms shown in the literature that led to the 
performance or injury outcomes.  

 There are several other advantages of a hybrid statistical-physiological approach. 
This includes allowing incremental improvement of model prediction by improving the 
underlying models or model parameters, better use of existing data (combining heterogene-
ous datasets), allowing extrapolation to different training regimens, and prediction of the 
time evolution of training outcomes. However, the method is more complex and less intui-



tive than a traditional statistical approach and the overall accuracy depends on the size and 
quality of the data as well as how accurate the underlying mechanisms are modeled.  

 This approach was used to develop. The following section gives an overview of a  
previously described run performance model (Sih and Shen 2006) as well as details on the 
development of two additional performance models (sit-ups and push-ups). In addition, two 
injury models (stress fracture and overuse injury) were developed using the hybrid statisti-
cal-physiological approach.  

2.1.1.1 Statistical Methods Overview 
 To compare model performance with a traditional statistical approach, the same Test 
Index Cluster (TIC) method as with the running model development was employed to 
determine the most statistically relevant variables from which to predict training outcome. 
The purpose of the TIC analysis is to identify relevant predictor variables and the most 
appropriate cutoff values with which to classify individuals into “high” and “low” risk 
groups. The procedure is as follows: 

• Unpaired t-test to eliminate irrelevant variables 

• Receiver-Operator Curve Analysis (ROC) to optimize variable cutoff values 

• Logistic Regression to identify statistically significant variables 

• Test Index Cluster Analysis to quantify the accuracy of identified variables in the 
prediction 

Additional information on TIC analysis can be found in Allison et al. (2005) or statistical 
text books.  

2.1.2 Run Model Overview 

2.1.2.1 Literature Review 
 A performance model literature review was performed (Table 1). The previous litera-
ture review (Sih and Shen 2006) suggests that a “Banister-type” single-component model 
without fatigue. (See Sih and Shen 2006 for additional details.) 

Table 1. Performance model literature review summary.  

Source Data Summary 

(Morton et al. 1990) “Banister” model. Uses exponential decay fitness and fatigue 
components with reasonable results.  

(Busso 2003) 
Banister model with a time varying fatigue component to account for 
increased fatigue from multiple training sessions. Appears more 
realistic than previous versions.  



 

2.1.2.2 Methods 
 The performance model chosen is:  

 ( )0 max 1gP P P P W= + − ⊗  (1) 

where P is normalized performance, P0 is initial or pretraining performance, Pmax is an 
individual’s maximum P, g1 is the performance enhancement component, W are daily train-
ing dosages, and ⊗ is the convolution function. g1 controls how training affects performance 
in the future whereas the convolution function allows multiple training bouts to contribute 
to performance.  

 A timed 2-mile run is part of the APFT that recruits must pass to complete BCT. To 
predict the runtime after training, Equation (1) was optimized using recruits who under-
went Army BCT at various training centers. For running, performance P was defined as:  

 event

max

VP V=  (2) 

where Vevent is the final PFT run velocity and Vmax is the estimated World Record velocity 
for the final PFT run distance (2 miles). In addition, training dosage was defined as:  

 rate
rate duration bWW W e= × ×  (3) 

where the exponent accounts for high training loads where anaerobic process dominate. 
Wrate is bound by normalizing VO2 using VO2max and resting metabolic rate (RMR),  

 ( )
( )

2
rate

2max

VO
VO

RMRW RMR
−= −  (4) 

 The final model parameters needed to compute P (Eq. (1)) are the coefficients in the 
performance enhancement component, g1, which is defined as:  

 1
1 1

t
g k e τ−
=  (5) 

where t is time (days), k1 is a linear coefficient (unitless) and τ1 is a time constant (days). 
This term dictates the amount of performance increase with training and the loss of the 
performance with time.  

2.1.2.3 Results 

Male Recruits 
 The initial prevalence (overall failure rate) was 4% for the males on the final PFT run. 
The TIC analysis identified only initial PFT runtime as a significant predictor, with a time 
of 20:17 or slower. Both the TIC and model predictions are comparable, with similar diag-
nostic accuracy (88% for TIC and 84% for the model) and positive post-test probabilities 
(Table 6).  



 

Table 2. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of the 
run performance model for male recruits undergoing basic combat training at various 

Army training sites.  

Final PFT Run Final PFT Run 
TIC 

Fail Pass 
MODEL 

Fail Pass 

IST Run > 
20:17 9 47 Pred Fail 10 67 

IST Run < 
20:17 11 428 

 

Pred Pass 10 409 

For the TIC, one item was identified: a runtime > 20:17 on the initial PFT run. A recruit with 
this item had a significantly greater chance of failing the final PFT (Sensitivity = 0.45; Speci-
ficity = 0.90; Positive pretest probability = 4%; Positive post-test probability = 16%; Negative 
post-test probability = 3%). For the performance model, accuracy was similar (Sensitivity = 
0.50; Specificity = 0.86; Positive pretest probability = 4%; Positive post-test probability = 
13%; Negative post-test probability = 2%). 

Female Recruits 
 The initial prevalence (overall failure rate) was 8% for the females on the final PFT 
run. The TIC analysis identified only initial PFT runtime as a significant predictor, with a 
time of 22:55 or slower. Both the TIC and model predictions are comparable, with similar 
diagnostic accuracy (80% for TIC and 87% for the model) and positive post-test probabilities 
(Table 3).  

Table 3. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of the 
run performance model for female recruits undergoing basic combat training at various 

Army training sites.  

Final PFT Run Final PFT Run 
TIC 

Fail Pass 
MODEL 

Fail Pass 

IST Run > 
22:55 7 39 Pred Fail 4 18 

IST Run < 
22:55 14 202 

 

Pred Pass 17 237 

For the TIC, one item was identified: a runtime > 22:55 on the initial PFT run. A recruit with 
this item had a significantly greater chance of failing the final PFT (Sensitivity = 0.33; Speci-
ficity = 0.84; Positive pretest probability = 8%; Positive post-test probability = 15%; Negative 
post-test probability = 6%). For the performance model, accuracy was similar (Sensitivity = 
0.19; Specificity = 0.93; Positive pretest probability = 8%; Positive post-test probability = 
18%; Negative post-test probability = 7%). 

 

2.1.2.4 Discussion 
 For both the male and female datasets, the run performance model prediction accu-
racy was comparable to a TIC analysis when subject height, weight, and gender as well as 



 

initial PFT push-ups, sit-ups, and runtimes were used in literature-based regression equa-
tions to estimate the parameters for the above equations. Thus, the model gives reasonable 
results using parameters and values found in the literature and suggests that the model 
has the potential to predict PFT runtimes accurately. (See Sih and Shen 2006 for additional 
details.)  

2.1.3 Upper-body Performance: Sit-ups & Push-ups Models (Initial version) 
 In addition to a run exercise, two upper-body performance tests are required to pass 
BCT in the U.S. Army Physical Fitness Test (PFT)—the maximal number of sit-ups and 
push-ups in two minutes. Other military branches may perform other upper-body tests such 
crunches and pull-ups and models for these exercises will have to be developed at a later 
time. The PFT is usually administer three times—an initial (1st), mid-, and final (FPFT).  

2.1.3.1 Literature Review 
 Unlike running, there is relatively little published on any upper-body performance 
enhancement during exercises such as sit-ups, push-ups and pull-ups. The few studies 
found suggested that initial strength is important (Flanagan et al. 2003) and that aerobic 
training does little to impact strength/power performances (Kraemer et al. 2001). In addi-
tion, it should be noted that males generally have 55% more upper body strength compared 
to women (Kraemer et al. 2001) and that initial body percent body fat and strength to fat-
free mass ratio are good predictors of pull-up exercises (Flanagan et al. 2003).  

2.1.3.2 Methods 
 The lack of information in the literature makes determining the key input variables 
and underlying mechanisms of sit-up and push-up performance difficult. Under ideal condi-
tions, percent body fat and strength to fat-free mass ratio appear be the best inputs to 
predictive sit-up and push-up models. However, neither of these can be accurately meas-
ured in the field, making their use impractical. Initial strength can be accounted for from 
1st PFT sit-up and push-up tests and separate model parameters can be developed for each 
gender to account for male/female strength differences. Since the literature suggests that 
aerobic exercises such as marching and running are not appropriate, only upper body exer-
cises such as those described in the U.S. Army’s Conditioning Drill I and II are to be used 
as training inputs.  

 For the initial sit-up and push-up models, a similar response model formulation as 
the run model was used since many strength performance characteristics are similar to 
those seen for aerobic exercises—a decrease in training benefit from a fixed amount of exer-
cise as fitness increases and the loss of fitness with disuse. The formulation is:  



 ( )0 1P P P g W= + ⊗  (6) 

where P is normalized sit-up or push-up performance and P0 is normalized initial or pre-
training performance. g1 is a time-dependent training enhancement constant and W is the 
daily training dosages, which are combined using ⊗, the convolution function—a summa-
tion function where the effect of training dosages decreases with time. Additional details on 
each of the model variables are discussed below.  

 Performance level P is a normalized exercise rate, defined as the percentage of the 
maximum number of sit-ups or push-ups per minute that can be performed:  

 event maxRate RateP =  (7) 

 This formulation allows performances of different durations to be predicted. Unable to 
find sit-ups records for the short time intervals seen in the PFT, rates at longer durations 
were investigated. The maximum number of sit-ups in an hour was set by Mark Pfeltz in 
1985 and in 24 hours by Edmar Freitas in 2002. Both records were set at an approximately 
77 sit-ups per minute rate. Unable to find any additional information, it was assumed that 
the maximum rate at the one to two minute duration to be 150 sit-ups per minute. For 
push-ups, there is anecdotal evidence that rates up to 200 per minute can be achieved. P0 is 
the initial performance level, as measured by the 1st PFT divided by the maximal sit-up or 
push-up rate. No differences for gender was found or incorporated in the maximal rate for 
this model.  

 Training dosage W is defined as the number of sit-ups or push-ups per day performed 
during the training regimen and g1 is defined as 

 ( )11 1 exp tg k τ=  (8) 

where k1 is a training constant, which describes the increase in performance for a single 
training bout, τ1 is a time constant (days), which describes the decease in performance due 
to lack of exercise with time, and t is time in days. Being unable to find any training studies 
directly involving sit-ups or push-ups, we turn to a direct muscle strength study (Mulder et 
al. 2006) that found in 8 weeks a linear decrease of 16.8 ± 7.4 % in the muscle with bed rest. 
This suggests that τ1 or the reduction in strength from disuse for muscle strength is 
approximately 100 days.  

 The only model parameter remaining that is needed to compute P is k1. Lacking 
information from the literature, k1 was estimated by optimizing the sit-up and push-up out-
comes from an acquired U.S. Army dataset (Group G, see Appendix). Males and females 
were analyzed separately. Unfortunately, the dataset lacked specific information on the 
NonStandardized Training Regimen used to train the recruits. However, Knapik et 
al.(2004) found a similar performance outcome between the Standardized and 



NonStandardized regimens. Thus, the training regimen was assumed to be 8 weeks of 
Standardized Army BCT, which specifies the daily number of Conditioning Drill 1 and 2 
repetitions to be performed. Table 4 lists the number of sit-ups and push-ups for each drill 
and Figure 1 shows the daily total number of each exercise or W estimated. Values for k1 
can be found in Table 5.  

Table 4. The estimated number of sit-ups and push-ups performed for a single 
Conditioning Drill I and II bout used by the U.S. Army’s Standardized Training regimen.  

 # of Sit-ups # of Push-ups 

Conditioning Drill I 6 2 

Conditioning Drill II 2 3 
Note that the Conditioning Drills are often repeated multiple times during the exercise 
session. 
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Figure 1. The estimated number of sit-ups and push-ups performed each day during the 

U.S. Army Standardized Training Program.  
Values were estimated from the TRADOC Standardized Physical Training Guide (Army 
Accessions Command 2003).  

 



Table 5. The optimum k1 for males and females.  

Using a constant τ1 and the training dosage W, the best k1 for males and females was found 
that resulted in the least squares error between the existing 1st and Final PFT performance 
results.  

 Sit-ups (τ1 = 100 days) Push-ups (τ1 = 100 days) 

Male 2.37E-5 ± 1.41E-5 3.10E-5 ± 1.73E-5 

Female 2.68E-5 ± 1.50E-5 2.67E-5 ± 1.41E-5 
 

2.1.3.3 Results 
 To estimate model accuracy, model predictions were calculated using input values 
from dataset Group G (see Appendix), which contains data from approximately 681 male 
and 336 female recruits who underwent U.S. Army BCT circa 1997. Input variables for sit-
ups were the 1st PFT sit-up count, gender, and daily sit-up number. Input variables for 
push-ups were the 1st PFT push-up count, gender, and daily push-up number. Accuracy was 
assessed by comparing model predictions to the observed Final PFT results. In addition, 
model predictions are compared to those derived from the statistically-based TIC procedure 
mentioned previously (See Section 2.1.1.1).  

Sit-ups: Male Recruits 
 The initial prevalence (overall Final PFT failure rate) was 11% for the males on the 
final PFT sit-up exercise. The TIC analysis identified initial PFT sit-up number and 
previous activity level (self-rated questionnaire data) as significant predictors. Both the TIC 
and model predictions are comparable, with similar prognostic accuracy (74% for TIC and 
75% for the model) and positive post-test probabilities (Table 6). Positive likelihood ratio 
(PLR) and 95% confidence interval for the TIC and model were 2.1 (1.4-3.0) and 1.7 (1.2-
2.5), respectively.  

Table 6. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of the 
sit-up performance model for male recruits undergoing basic combat training at various 

Army training sites (Group G).  

Final PFT Sit-Up Final PFT Sit-Up 
TIC 

Fail Pass 
MODEL 

Fail Pass 

Any one or 
more 17 118 Pred Fail 20 98 

None 16 359 

 

Pred Pass 37 380 
For the TIC, two items were identified: a sit-up count < 57 on the initial PFT test and a self-
reported fitness level of “about the same” or “somewhat less” than others. A recruit with 
either of these items had a significantly greater chance of failing the final PFT (Sensitivity = 



1 

0.75; Specificity = 0.51; Positive pretest probability = 6%; Positive post-test probability = 
13%; Negative post-test probability = 4%). For the performance model, accuracy was similar 
(Sensitivity = 0.35; Specificity = 0.80; Positive pretest probability = 11%; Positive post-test 
probability = 17%; Negative post-test probability = 9%). Number of samples in TIC and 
model differ due to missing data. 

 

Sit-ups: Female Recruits 
 The initial prevalence (overall Final PFT failure rate) was 21% for the females on the 
final PFT sit-up exercise. The TIC analysis identified initial PFT sit-up number and height 
as significant predictors. The TIC performed better than the model (prognostic accuracy of 
81% for TIC and 66% for the model), including better positive post-test probabilities (Table 
7). PLR and 95% confidence interval for the TIC and model were 1.9 (0.6-5.9) and 1.7 (1.2-
2.3), respectively.  

Table 7. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of the 
sit-up performance model for female recruits undergoing basic combat training at 

various Army training sites (Group G).  

Final PFT Sit-Up Final PFT Sit-Up 
TIC 

Fail Pass 
MODEL 

Fail Pass 

Any one or 
more 4 10 Pred Fail 30 69 

None 41 208 

 

Pred Pass 28 155 
For the TIC, two items were identified: a sit-up count < 3 on the initial PFT test and a height 
> 1.52 m. A recruit with either of these items had a significantly greater chance of failing the 
final PFT (Sensitivity = 0.09; Specificity = 0.95; Positive pretest probability = 17%; Positive 
post-test probability = 29%; Negative post-test probability = 16%). For the performance 
model, accuracy was not as good (Sensitivity = 0.52; Specificity = 0.69; Positive pretest 
probability = 21%; Positive post-test probability = 30%; Negative post-test probability = 
15%). Number of samples in TIC and model differ due to missing data. 

 

Push-ups: Male Recruits 
 The initial prevalence (overall Final PFT failure rate) was 14% for the males on the 
final PFT push-up exercise. The TIC analysis identified initial PFT push-up number, 
previous activity level (self-rated questionnaire data), and age as significant predictors. 
Both the TIC and model predictions are comparable, with similar prognostic accuracy (75% 
for TIC and 73% for the model) and positive post-test probabilities (Table 8). PLR and 95% 
confidence interval for the TIC and model were 2.3 (1.7-3.2) and 1.9 (1.4-2.6), respectively.  

 



Table 8. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of the 
push-up performance model for male recruits undergoing basic combat training at 

various Army training sites (Group G).  

Final PFT Push-Up Final PFT Push -Up 
TIC 

Fail Pass 
MODEL 

Fail Pass 

All Three 28 105 Pred Fail 32 100 

None 24 352 

 

Pred Pass 45 358 
For the TIC, three items were identified: a sit-up count < 56 on the initial PFT test, a self-
reported fitness level of “about the same” or “somewhat less” than others and an age of 24 
years or younger. A recruit with all three of these items had a significantly greater chance of 
failing the final PFT (Sensitivity = 0.54; Specificity = 0.77; Positive pretest probability = 10%; 
Positive post-test probability = 21%; Negative post-test probability = 6%). For the 
performance model, accuracy was similar (Sensitivity = 0.42; Specificity = 0.78; Positive 
pretest probability = 14%; Positive post-test probability = 24%; Negative post-test probability 
= 11%). Number of samples in TIC and model differ due to missing data. 

 

Push-ups: Female Recruits 
 The initial prevalence (overall Final PFT failure rate) was less than 5% for the 
females on the final PFT push-up exercise. The TIC analysis identified only height as a 
significant predictor. The TIC performed better than the model (prognostic accuracy of 85% 
for TIC and 73% for the model), including better positive post-test probabilities (Table 9). 
PLR and 95% confidence interval for the TIC and model were 6.4 (4.8-8.5) and 0.6 (0.2-2.1), 
respectively.  

Table 9. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of the 
push-up performance model for female recruits undergoing basic combat training at 

various Army training sites (Group G).  

Final PFT Push-Up Final PFT Push -Up 
TIC 

Fail Pass 
MODEL 

Fail Pass 

Taller 3 41 Pred Fail 2 62 

Shorter 0 221 

 

Pred Pass 13 203 
For the TIC, one item was identified: a height > 1.74 m. A recruit this item had a significantly 
greater chance of failing the final PFT (Sensitivity = 0.87; Specificity = 0.84; Positive pretest 
probability = 1%; Positive post-test probability = 8%; Negative post-test probability = 0%). 
For the performance model, accuracy was not as good (Sensitivity = 0.13; Specificity = 0.77; 
Positive pretest probability = 5%; Positive post-test probability = 3%; Negative post-test 
probability = 6%). Number of samples in TIC and model differ due to missing data. 

 



2.1.3.4 Discussion 
 As expected, the accuracy of these models was lower than that seen for running due to 
the lack of information on these exercises in the literature. Because of similar performance 
characteristics to running, both the sit-up and push-up models were developed using a 
similar algorithm to that developed for the running model. However, unlike running, there 
was limited information available in the literature to estimate parameter values such as 
maximum exercise rates and other parameter constants. In addition, the training regimen 
lacked details to fully quantify the number of sit-ups and push-ups performed.  

 For both sit-ups and push-ups, the results were mixed with the model accuracy being 
similar to a TIC analysis for males but worse for females. The primary reason for the 
decrease in accuracy in the female push-up group is the small number of failures. In 
addition, height was identified (and used) by the TIC to predict outcome, a variable not 
previously identified as a significant factor during the literature review. Incorporation of 
height into the model may increase accuracy to the same level as the TIC or better. Also, 
the development of a strength-based model may yield increased accuracy. These changes 
were implemented in an updated sit-up model (see 2.3.1 Sit-Up Performance, page 33).  

2.1.4 Stress Fracture 
 One of the most detrimental injuries in terms of attrition, military readiness, and 
medical cost is the lower leg stress fracture. The process leading to injury is complex, 
believed to be caused by damage accumulation due to excessive stress and strain on the 
bone from training.  

 Previously, an extensive literature review, analysis, and development of a model have 
been met with mixed results (Woodmansee et al. 2004). In the report, it was noted that 
much of the data published in the literature is conflicting, with only a few factors consis-
tently identified as being correlated to stress fracture. This is likely due to the complicated 
nature of the injury, which is dependent on the quality of the bone, the physical condition of 
the muscle supporting the bone, the training regimen, and even the skill and motivation of 
the recruit. In theory, a thorough biomechanical analysis will help explain seemingly 
unrelated risk factors (i.e., the effect of various factors on the injury mechanism). However, 
the relatively small number of stress fractures (3-10% prevalence) and random nature of 
the injury make prediction difficult.  

 Previous modeling efforts in this area were unsuccessful primarily because the 
equations predicting stress fracture found in the literature were unstable. The models 
accounted for bone changes at the cellular level, which led to very different predictions with 
only a small change in model input values when applied to a whole bone. To address the 



shortcomings of the models published in the literature, a simpler dose-response model was 
developed. This section describes the development of this model.  

2.1.4.1 Literature Review 
 In the previous literature review (Woodmansee et al. 2004), multiple risk factors have 
been identified. Table 10 (Bennell et al. 1999) provides a good summary of possible risk 
factors and the theoretical biomechanical mechanism to injury. Of these risk factors, it is 
our opinion that bone geometry, fitness level, menstrual irregularities and training 
regiment appear to be the most consistently identified. See Table 11.  

Table 10. Risk factors for stress fractures: possible mechanisms and inter-relationships. 
(From Bennell et al. 1999) 

Risk factor Mechanisms and inter-relationships 
Low bone density Decreased bone strength 
Small bone size Decreased bone strength 
Skeletal alignment Elevated bone strain, unaccustomed bone strain, muscle fatigue 
Body size and 
composition 

Elevated bone strain, menstrual disturbances, muscle fatigue, low bone density 

Bone turnover Low bone density, elevated bone strain, inadequate repair of microdamage 
Muscle flexibility and 
joint range 

Elevated bone strain, unaccustomed bone strain, muscle fatigue 

Muscle strength and 
endurance 

Elevated bone strain, unaccustomed bone strain 

Low calcium intake Greater rate of bone turnover, low bone density, inadequate repair of microdamage 
Nutritional factors Altered body composition, low bone density, greater rate of bone turnover, reduced calcium 

absorption, menstrual disturbances, inadequate repair of microdamage 
Menstrual 
disturbances 

Low bone density, greater rate of bone remodeling, increased calcium excretion 

Training Elevated bone strain, unaccustomed bone strain, greater number of loading cycles, muscle 
fatigue, inadequate time for repair of microdamage, menstrual disturbances, altered body 
composition 

Inappropriate surface Elevated bone strain, unaccustomed bone strain, muscle fatigue 
Inappropriate 
footwear 

Elevated bone strain, unaccustomed bone strain, muscle fatigue 

Higher external 
loading 

Elevated bone strain, muscle fatigue 

Genetic factors Low bone density, greater rate of bone remodeling, psychological traits 
Psychological traits Excessive training, nutritional intake/eating disorders 
 
 Bone Geometry: Currently, most bone geometry studies utilized either DXA or X-ray 
to estimate bone dimensions. Most of the X-ray data comes from a single set of data 
gathered from Israeli recruits. In addition, the accuracy of sectional area measurements 
from DXA is unknown.  



 Fitness Level: Poor fitness or low levels of activity is likely a factor for military 
training. Caution must be used when referring to studies using athletes or habitual 
runners. These populations likely have a different fitness level than that seen in BCT.  

 Menstrual Irregularity: Menstrual irregularity is more common in female athletic 
populations, where it has been associated with stress fracture. This factor has also been 
seen in female recruits but the number of recruits with menstrual irregularity is small. The 
exact pathway of menstrual irregularity to stress fracture is not known.  

 Training Regimen: Numerous studies have associated training or changes in training 
regimens with stress fracture. Due to space constraints and the difficulty in monitoring 
BCT, none of these studies published sufficient information to quantify training.  

 

Table 11. Consistently identified risk factors for overuse injuries occurring during 
military training.  

Risk Factor Reference 

Bone Geometry 
(CSA, Icm, width, 
modulus) 

(Beck et al. 1996; Giladi et al. 1987; 
Milgrom et al. 1988; Milgrom et al. 1989) 

Fitness Level 
(Lauder et al. 2000; Milgrom et al. 2000; 
Montgomery et al. 1989; Shaffer et al. 
1999) 

Menstrual Irregularity  (Bennell et al. 1999; Winfield et al. 1997) 

Training Regimen 
(Garcia et al. 1987; Popovich et al. 
2000; Ross 1993; Scully and Besterman 
1982) 

 

 Also of interest is a review by Jones et al. (1994) that noted no difference in overuse 
injury rate per cumulative run mileage, regardless of the time frame the running occurred 
(Figure 2). This suggests that the number of steps or loading cycles is a dominant factor in 
this type of injury and reflects the accumulation of damage with each step.  

 



 
Figure 2. Cumulative incidence of injury by cumulative miles of running for 2 army 

infantry basic training units during 12 weeks of training.  
Despite the differences in run distance, Final PFT runtimes were similar. (From Jones et al. 
1994) 

 

2.1.4.2 Methods 
 Direct measure of the four consistent risk factors identified in the literature is 
difficult in a large BCT population and, thus, the model was developed using less direct 
(and less accurate) estimates. For example, bone geometry, while important, cannot be 
measured directly to level of accuracy needed for stress fracture prediction. However, bone 
geometry is correlated to body mass, with heavy set individuals generally having bigger 
bones (Beck et al. 1996) and it is likely that the correlation also holds for Body Mass Index 
(BMI). Also, the accepted measure of aerobic fitness is oxygen consumption or VO2. Again, 
obtaining a direct VO2 measurement from BCT recruits is impractical. However, BCT 
questionnaires routinely ask for a self-reported fitness level that can be used as a crude VO2 
estimate. As for the training regimen, ideally each individual’s training would be quantified 
separately but a practical means to accomplish this has not been developed. Thus, we 
assume that all recruits perform the same training regimen—the one assigned in the 
training outline plan. For this initial model, we ignore the effects of menstrual irregularity 
on female stress fracture rates.  

 



 
Figure 3. The cumulative stress fracture rate versus cumulative run distance for males 

and females of dataset G (see Appendix).  
Lines represent the mean (solid) and 95% CI (dash).  

 

 To develop the response model, the observation by Jones et al. (1994) was applied to 
dataset Group G (see Appendix) by plotting the cumulative stress fracture incidence versus 
the cumulative distance run during training for males and females (Figure 3). Unfortu-
nately, the dataset lacked the information to include marching but the effect is likely small 
due to the lower impact loads of marching. Under the assumption that these figures repre-
sent the average male or female probability of stress fracture, 1 km of running can be rede-
fined as a dosage unit of “1.” Therefore, the figures also represent a cumulative “dose” 
versus cumulative injury (or chance of injury) stress fracture response model. Recruits more 
likely to be injured will have a larger dose per km run and those less likely will be able to 
run further before being subject to the same dosage as an average recruit. In developing an 
equation to represent injury response relationship, several key observations were incorpo-
rated. One is an initial offset to account for the lack of injuries during start of training. The 
second is that the injury rate increases rapidly initially and, third, that the injury rate 
continues to climb as the cumulative distance increases. These characteristics are all incor-
porated via the following equation:  

 offsetP A D D= −  (9) 

where P is the probability of stress fracture, D is the cumulative dose, Doffset is the dosage 
below which there are no stress fracture injuries, and A is a gender-based constant that 
adjusts the rapid initial and continued increase in injury likelihood with cumulative dosage. 
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The best values for A and Doffset were found for each gender using a least squares fit (Table 
12).  

Table 12. The best fit values for Equation (9) when applied to the male and female stress 
fracture versus dosage data from Group G.  

 A Doffset 

Male 4.46E-3 6.3 

Female 18.8E-3 6.8 

 

 Estimating training dosage can be difficult. Prior attempts at modeling stress frac-
tures indicate that it is unfeasible to mimic the complex physiological and mechanical proc-
esses involved in the loading of bone. Nevertheless, from the literature it is apparent that 
some individuals are more susceptible to injury, which should be reflected in a higher 
dosage for the same distance run as an average individual. Identified factors include low 
physical conditioning, high or low BMI, and female gender (Table 11). Poor physical condi-
tioning is likely contributing to fatigue, causing “bad form,” and a loss of coordination, 
which increases stress in the bone. Low BMI individuals (and female gender) have smaller 
bones, which are more easily damaged, and those with high BMI values put addition stress 
on tissues. To account for these factors, the following dosage definition was used:  

 = damage per unit training volume × training volumeD  (10) 

 Applying the cumulative distance concept:  

 ( ) gait= damage distance × cumulative distance D SF×  (11) 

where “damage/distance” depends on an individual’s propensity for stress fracture and 
SFgait weighs the effect of different gait (i.e., running has more affect on dose than march-
ing). To account for physical conditioning and bone geometry in the damage/distance term, 
VO2max and BMI were used, respectively: 

 ( ) ( )
2

2
VO 2max BMI ideal offsetdamage distance SF VO SF BMI BMI SF= + − +  (12) 

 Since VO2max was not measured in Group G, we estimate it based on self-reported 
questionnaire data provided. Assuming VO2max ranges from 45-85 ml/kg/min for males and 
40-85 ml/kg/min for females (McArdle et al. 1991), a simple linear relationship between the 
questionnaire data and the VO2max range was computed where those that reported the 
highest fitness had the largest VO2max and vice versa. BMI (kg/m2), which is weight / 
height2, was provided in the dataset and the term (BMI – BMIideal)2 accounts for the 



observed nonlinear trend. A plot of BMI and injury rate suggests that BMIideal is around 25 
kg/m2 and 22 kg/m2 for males and females, respectively (Figure 4).  
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Figure 4. The percent of males (left) and females (right) from dataset Group G that 

sustained a stress fracture when categorized by BMI.  
Note the nonlinear relationship seen for both genders. 

 

 To determine the three scaling factors (SFVO2max, SFBMI, and SFoffset) from Equation 
(12), an optimization scheme was employed. For each gender, Group G subjects were split 
into 5 different subgroups, depending on their questionnaire response and BMI values (high 
and low activity, high BMI, high and low aerobic activity). Since the stress fracture injury 
rate at the end of training, P, is known for each group, the response equation (Eqn. (9)) can 
be used to determine the corresponding dosage, D. Combining Equations (11) and (12) 
yields:  

 ( ) ( )( )2

2
VO 2max BMI ideal offset gait= × cumulative distance D SF VO SF BMI BMI SF SF+ − + ×  (13) 

where the only unknowns are three scaling factors (SFVO2max, SFBMI, and SFoffset). Using 
least squares, the best fit values for the scaling factors was found that predicts the observed 
cumulative damage D for the seven sub-groups (Table 13). Using a standard Receiver-
Operator Curve analysis, a cutoff value of 0.072 for males and 0.181 for females for P opti-
mized the predictive capability of the model.  

Table 13. Stress fracture scaling factors for Equation (13). 

Determined by minimizing the error between the predicted and observed stress fracture rate 
for males and females of dataset Group G.  

 SFVO2 SFBMI SFoffset 

Male -0.1319 0.029 9.87 

Female -0.0677 0.027 4.79 



2.1.4.3 Results 
 To estimate model accuracy, model predictions were calculated using input values 
from dataset Group G (see Appendix), which contains data from approximately 681 male 
and 336 female recruits who underwent U.S. Army BCT circa 1997. Input variables 
included self-reported fitness level questionnaire answers, BMI, and gender. Accuracy was 
assessed by comparing model predictions to the observed stress fracture prevalence at the 
end of training. In addition, model predictions were to be compared to those derived from 
the statistically-based TIC procedure mentioned previously (See Section 2.1.1.1). However, 
no significant factors were found and a TIC was not performed.  

Male Recruits 
 The initial prevalence (overall stress fracture rate) was 3% for the males. The model 
had a prognostic accuracy of 94% and a positive likelihood ratio (PLR) and 95% confidence 
interval of 3.2 (0.8-12.9).  

Table 14. Stress fracture model accuracy for male recruits (Group G) undergoing basic 
combat training at various Army training sites.  

Model Observed 

 StFx No StFx 

Pred StFx 2 18 

Pred No StFx 19 586 
Sensitivity = 0.10; Specificity = 0.97; Positive pretest probability = 3%; Positive post-test 
probability = 10%; Negative post-test probability =3%. A TIC analysis found no significant 
factors.  

 

Female Recruits 
 The initial prevalence (overall stress fracture rate) was 13% for the females. The 
model had a prognostic accuracy of 73% and a PLR and 95% confidence interval of 3.2 (0.9-
2.5).  



Table 15. Stress fracture model accuracy for female recruits (Group G) undergoing basic 
combat training at various Army training sites.  

Model Observed 

 StFx No StFx 

Pred StFx 12 56 

Pred No StFx 26 205 
Sensitivity = 0.10; Specificity = 0.97; Positive pretest probability = 3%; Positive post-test 
probability = 10%; Negative post-test probability =3%. A TIC analysis found no significant 
factors.  

 

2.1.4.4 Discussion 
 Using concepts and factors identified in the literature, a dosage and response model 
for stress fracture prediction during training was developed. Factors incorporated into the 
dosage calculation include bone geometry (via BMI) and fitness level (from questionnaire 
answers). The response model is based on the observed relationship between running 
distance and injury likelihood, which reflects the accumulation of bone damage during 
cyclic loading. Thus, the dose-response algorithm accounts for the significant factors identi-
fied in the literature without overly complex physiologically-based equations, which were 
previously found to be unstable. In addition, a TIC analysis of the data found no statisti-
cally relevant variables, which highlights the potential of a model to be more robust than a 
traditional statistical approach.  

 There are a number of ways model accuracy can be improved. Current estimates of 
VO2 from questionnaire data are unverified and a more direct method of measure VO2 (or 
different measure of fitness) should be beneficial. Also, the assumed regimen for Group G 
does not contain any marching, and, thus, the model is unable to account for this mode of 
gait in the accumulation of damage and stress fracture prediction. In addition, the response 
model in its current form does not account for bone remodeling or the ability of bone to 
adapt to the additional stresses of BCT.  

2.1.5 Lower-body Overuse Injury 
 In addition to stress fractures, the other common and detrimental injury during BCT 
is the soft tissue overuse injury of the lower body. This includes ailments such as tendoni-
tis, bursitis, and fasciitis. The progression (and mechanism) of injury is similar to stress 
fracture—loading causes damage accumulation in the tissues which eventually leads to an 
injury.  



2.1.5.1 Literature Review 
 Most research on soft tissue injury has been performed on the tendon, which is the 
structure connecting muscle to bone. Although there is a lack of understanding of the 
progression of overuse injury and the effect of loading, the general consensus is that loading 
has a short term effect of damaging the tendon but the long term effect is an adaptation 
and strengthening of the tissue (Archambault et al. 1995). In addition, researchers believe 
that adaptation depends on loading history but that data to support this hypothesis is diffi-
cult to acquire because of the limited loading history information available (Archambault et 
al. 1995).  

 Several attempts have been made to develop models to predict the changes in tendon 
structure and properties with loading. However, none appear capable of predicting injury in 
populations such as recruits undergoing BCT. This includes a model by Wren et al. (2000) 
that predicts changes in cross-sectional area, modulus, and strength of tendons from exer-
cise, disuse, and remobilization. While the model is not injury-based and of limited use for 
this project, it predicts an adaptation time constant of three months, which suggests that 
damage accumulation rather than tissue adaptation is dominant in the time frame of BCT 
(2-3 months). A Paris Law-type damage model was developed by Adeeb et al. (2004), which 
is similar to those seen for stress fractures. However, these types of models were found to 
be unstable for stress fracture prediction when applied to large populations such as recruits 
undergoing BCT and are likely to be unstable in the prediction of soft tissue injuries as 
well. A third model was described in the literature—a damage model developed for when 
tendons exceed the elastic limit (Natali et al. 2005). Unfortunately, this is an acute injury 
situation and not associated with overuse injuries.  

 Like stress fracture, there are many risk factors associated with overuse injury. In 
general, these can be categorized into three groups: training regimen, anthropometry, and 
fitness level. Regimen factors include training conditions such surface and footwear (Jones 
1983). However, the most common belief is that overuse injuries occur because of the 
sudden increase in exercise, which is often characterized by an increase in running distance 
per week as well as longer duration (amount per day) and higher frequency (number of days 
per week) workouts (Jones 1983; Jones et al. 1994). Note also that running mileage was a 
key factor (Figure 2) and used in the development of the stress fracture model. Anatomical 
factors include physical anomalies such as alignment issues, body weight, gender, and 
range of motion (Jones 1983; Krivickas 1997). It is thought that fitness level also plays an 
important role, with prior physical condition and/or injury, and technique being main 
factors (Jones 1983; Jones et al. 1994).  

 From the literature review, it is evident that most studies agree that overuse injuries 
are caused by a complex process that entails the accumulation of damage from excessive 



loading. However, as noted by Krivickas (1997), the findings in the literature for some 
factors are inconsistent, correlations do not prove cause and effect, and results have not 
been evaluated for reliability and repeatability. Nevertheless, like stress fractures, training 
regimen, fitness level, and internal loading conditions (tissue geometry, body weight, etc.) 
are common identified risk factors that appear to be important. Also of note is the agree-
ment that the sudden increase in training is a contributor to injury.  

2.1.5.2 Methods 
 As with stress fractures, a thorough biomechanical model should be able to account 
for and bring together the seemingly unrelated risk factors but is too complex to be practi-
cal. Thus, a simpler model has been developed that accounts for the main overuse injury 
risk factors identified in the literature: training regimen, fitness level, and internal loading 
conditions. As before, the model consists of a dosage calculation to account for the identified 
risk factors and training amount, and a response model, which accounts for the initial 
increase in injury rate due to the sudden change in training and the long-term decrease in 
injury rate due to tissue strengthening.  

 Because of the similarities to stress fractures in terms of injury progression (damage 
accumulation), the same form of the response equation that was developed for stress frac-
tures is used for overuse injuries, where the probability of injury P is based on the square 
root of the dosage (Eqn (9)). The square root gives an initial increase in injury probability 
due to the suddenness in training from BCT, and a leveling off of P as recruits become 
accustomed to the new training levels. As mentioned in the stress fracture section, there is 
also a damage offset, Doffset, which accounts for the initial portion of training where no inju-
ries occur.  
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Figure 5. The cumulative overuse injury rate versus cumulative run distance for males 
and females of dataset G (see Appendix).  

 
 Using dataset Group G, a plot of cumulative overuse injury and cumulative distance 
run was plotted for both genders (Figure 5) and a least squares fitting technique was used 
to find the best parameter values (Table 16). Under the assumption that this curve repre-
sents the response of the average recruit, 1 km of running was again defined as a unit 
dosage of “1” and an algorithm to adjust dosage for different individuals and training regi-
mens was sought.  

Table 16. The best fit values for Equation (9) when applied to the male and female overuse 
injury versus dosage data from Group G. 

 A Doffset 

Male 6.25E-3 1.7 

Female 12.4E-3 6.4 

 

 The dosage component is again an overall damage equation identical to that of stress 
fractures (Eqn (11)). However, the damage/distance term is slightly different to reflect the 
difference between overuse injuries and stress fractures. Like the stress fracture model, 
this term incorporates known risk factors that affect an individual’s likelihood of injury by 
using VO2 and BMI as estimates of fitness level and loading conditions. Unlike stress frac-
tures, however, the effect of BMI on injury probability was found to be different, with high 
BMI being detrimental to males and low BMI being detrimental to females (Figure 6). The 
effect of BMI is likely two-fold. First, low BMI individuals will have smaller tissues, which 



 

are more easily damaged with training, and high BMI individuals will be exposing their 
tissues to higher loads. Second, we hypothesize BMI also reflects pre-BCT training and may 
have a social aspect. Low BMI females (skinny) are less inclined to exercise compared to 
those that are heavier set. On the other hand, it is overweight males (high BMI) that are 
less likely to exercise on a regular basis. Both of these groups will not be as prepared for the 
sudden increase in exercise from BCT. Thus, the damage/distance component of Equation 
(11) becomes:  

 ( ) ( )
2VO 2max BMI offsetdamage distance SF VO SF BMI SF= + +  (14) 

where VO2max (ml/kg/min) is estimated from self-reported fitness level questionnaire 
responses and BMI (kg/m2) is computed from weight and height. This is reflected in the 
equation for overuse injury damage:  

 ( ) ( )( )2VO 2max BMI offset gait= × cumulative distance D SF VO SF BMI SF SF+ + ×  (15) 

 In a similar method to that used for the stress fracture model, recruits from Group G 
were broken down by gender into 6 subgroups depending on fitness level and BMI values to 
determine the three scaling factors (SFVO2max, SFBMI, and SFoffset) from Equation (15) (Table 
17). Using a standard Receiver-Operator Curve analysis, a cutoff value of 0.071 for males 
and 0.2 for females for P optimized the predictive capability of the model for overuse 
injuries.  

Table 17. Overuse injury scaling factors for Equation (15). 

Determined by minimizing the error between the predicted and observed injury rate for 
males and females of dataset Group G.  

 SFVO2 SFBMI SFoffset 

Male -0.0671 0.1851 0.7477 

Female -0.1448 -0.2589 16.01 
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Figure 6. The percent of males (left) and females (right) from dataset Group G that 

sustained a lower-body overuse injury when categorized by BMI.  
Note the opposing linear relationship seen for the genders. 

 

2.1.5.3 Results 
 To estimate model accuracy, model predictions were calculated by reapplying input 
values from dataset Group G (see Appendix), which contains data from approximately 681 
male and 336 female recruits who underwent U.S. Army BCT circa 1997. Input variables 
included self-reported fitness level questionnaire answers, BMI, and gender. Accuracy was 
assessed by comparing model predictions to the observed stress fracture prevalence at the 
end of training. In addition, model predictions were to be compared to those derived from 
the statistically-based TIC procedure mentioned previously (See Section 2.1.1.1).  

Male Recruits 
 The initial prevalence (overall overuse injury rate) was 5% for the males undergoing 
the U.S. Army BCT. The TIC analysis identified a greater number of initial PFT push-ups 
as the only significant predictor. Although the TIC performed better, both the TIC and 
model predictions are comparable, with high prognostic accuracy (95% for TIC and 88% for 
the model) and positive post-test probabilities (Table 18). Positive likelihood ratio (PLR) 
and 95% confidence interval for the TIC and model were 4.2 (0.5-34.9) and 1.6 (0.6-4.1), 
respectively.  



Table 18. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of 
the lower-body overuse injury model for male recruits undergoing basic combat training 

at various Army training sites (Group G).  

Observed Observed 
TIC 

OvrInj NoOvrInj 
MODEL 

OvrInj NoOvrInj 

> 77 1st 
PFT Push-

ups 
1 5 Pred OvrInj 4 54 

< 77 1st 
PFT Push-

ups 
24 524 

 

Pred No 
OvrInj 24 543 

For the TIC, one item was identified: a push-up count > 77 on the initial PFT test. A recruit 
with this item had a significantly greater chance of sustaining an injury (Sensitivity = 0.04; 
Specificity = 0.99; Positive pretest probability = 5%; Positive post-test probability = 17%; 
Negative post-test probability = 4%). For the injury model, accuracy was similar but less 
accurate (Sensitivity = 0.14; Specificity = 0.91; Positive pretest probability = 4%; Positive 
post-test probability = 7%; Negative post-test probability = 4%). Number of samples in TIC 
and model differ due to missing data. 

 

Female Recruits 
 The initial prevalence (overall overuse injury rate) was 9% for the females undergoing 
the U.S. Army BCT. The TIC analysis identified a small BMI as the only significant predic-
tor. Both the TIC and model predictions are comparable, with similar prognostic accuracy 
(88% for TIC and 87% for the model) and positive post-test probabilities (Table 19). Positive 
likelihood ratio (PLR) and 95% confidence interval for the TIC and model were 2.7 (0.8-9.3) 
and 3.9 (1.3-11.5), respectively.  

Table 19. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of 
the lower-body overuse injury model for female recruits undergoing basic combat train-

ing at various Army training sites (Group G).  

Observed Observed 
TIC 

OvrInj NoOvrInj 
MODEL 

OvrInj NoOvrInj 

< 19.4 BMI 3 11 Pred OvrInj 4 10 

> 19.4 BMI 25 271 

 

Pred No 
OvrInj 24 261 

For the TIC, one item was identified: BMI < 19.4. A recruit with this item had a significantly 
greater chance of sustaining an injury (Sensitivity = 0.11; Specificity = 0.96; Positive pretest 
probability = 9%; Positive post-test probability = 21%; Negative post-test probability = 8%). 
For the injury model, accuracy was similar (Sensitivity = 0.14; Specificity = 0.96; Positive 
pretest probability = 9%; Positive post-test probability = 29%; Negative post-test probability = 
8%). Number of samples in TIC and model differ due to missing data. 



2.1.5.4 Discussion 
 Using the same concepts and equation form as that developed for stress fractures, a 
dosage and response model was created that predicts the likelihood of sustaining a lower-
body overuse injury during training. The current model is based on the amount of damage 
sustained during running and incorporates several risk factors identified in the literature. 
Factors include fitness level (from questionnaire answers) as well as internal loading condi-
tions and ability to adapt to the higher loading conditions of BCT (from BMI). The algo-
rithms developed in this model are simpler but more stable than those in the literature, 
which should allow its application to a wider range of training regimens and populations.  

 Overall, the model performed with similar accuracy to the purely statistically-based 
TIC method. Of interest is that the TIC identified a higher number of push-ups in the 1st 
PFT as being predictive of overuse injury for males. The mechanism for this relationship is 
unclear and may be a Type I error—where a variable was erroneously found to be a factor 
because multiple variables were tested. Additional analysis of other datasets is needed to 
confirm push-up ability as a risk factor for overuse injuries.  

 As with the stress fracture model, model accuracy can be improved with more precise 
estimates of VO2, the incorporation of marching distances in the dosage estimate, and a 
tissue adaptation component.  

2.2 Model Validation 
 Having developed three performance (run, sit-up, push-up) and two injury (stress 
fracture, overuse) models based on concepts and risk factors found in the literature, model 
parameters were estimated using a U.S. Army dataset (Group G). Model prediction accu-
racy was comparable to a standard statistical test (TIC) when predicting performance and 
injury outcomes to Group G—the dataset from which the model parameters were derived.  

 Also of interest is how the models perform on additional, novel datasets, i.e., model 
validation. This gives an estimate of how the model is expected to perform in the field, 
where the actual performance and injury outcome to a completely different training regi-
men and population is unknown. Because the validation situation is different than that 
from which the model parameters have been developed, a decrease in accuracy is expected. 
However, if the dosage algorithms and response models have captured the underlying 
physiological mechanisms adequately, the reduction in accuracy should be smaller than 
that seen using a pure statistical approach.  

2.2.1 Run Performance 
 To validate the run performance model, input values from dataset Group F were 
entered into the model and the prediction was compared to the observed run performance 



at the end of training. Group F (see Appendix) was composed of 181 males and 167 females 
that underwent U.S. Army BCT at Ft. Jackson, SC in 1998 using the Standardized Train-
ing regimen. Unfortunately, due to the lack of regimen data, the same regimen was used 
from which the model parameters were optimized. Thus, the model (incorrectly) assumes 
that both Group F and Group G used the same regimen.  

 The results (Table 20) show that the run performance model accuracy was comparable 
to that of the statistical analysis using the same input measures. Unfortunately, because 
the lack of data forced the exact same training regimen to be used in both model develop-
ment and validation, it is difficult to conclusively demonstrate the models ability to predict 
performance with novel training regimens. Nevertheless, the results suggest that the 
modeling effort is “on the right track” and the predictions have the potential to be extrapo-
lated to different regimens. As expected, however, accuracy was reduced when the model 
(and TIC) was applied to the new dataset. We anticipate the model accuracy to be better 
than the TIC if the true training regimen is known and the model algorithms are imple-
mented correctly. 

Table 20. Run performance model and TIC validation results.  

Men Women  

Group G 
(performance 
on derivation 

dataset) 

Group F 
(performance 
on cross-vali-

dation) 

Group G 
(performance 
on derivation 

dataset) 

Group F 
(performance 

on cross-
validation) 

Prognostic 
Accuracy 80% 75% 88% 82% 

TIC 
PLR (95% CI) 2.1 (1.1 to 

4.1) 
2.6 (1.4 to 

4.7) 
4.5 (2.6 to 

7.9) 
1.5 (0.4 to 

5.6) 

Prognostic 
Accuracy 89% 83% 88% 80% 

Model 
PLR (95% CI) 2.3 (0.5 to 

9.4) 3.5 (1.4 to 18) 2.6 (1.1 to 
6.3) 

1.9 (0.7 to 
5.2) 

A single factor was used for the TIC: 1st PFT run time (see Sih and Shen 2006). For the 
model, 1st PFT run time, height, weight, and regimen were factors.  

 

2.2.2 Sit-Up Performance 
 As with running, the sit-up model was validated by applying the model to dataset 
Group F but with the same training regimen as Group G. For both males and females, the 
model accuracy increased when applied to the validation dataset. TIC accuracy also 



increased to a lesser degree for females. Unfortunately, there was insufficient previous 
activity data to make a TIC prediction for the males. See Table 21.  

 Because model (and TIC) accuracy increased with the validation dataset, the results 
suggest that there measures or factors exist that can improve the results or possibly that 
the factor parameters (weightings) should be adjusted. For example, the TIC analysis found 
height to be important. Because TIC accuracy was not reduced when applied to the valida-
tion dataset, this supports the addition of height into the model as well. This requires an 
additional biomechanical term in the dosage to account for the “leverage” a tall recruit must 
overcome during sit-ups and was incorporated in a subsequent model (see 2.3.1 Sit-Up 
Performance, page 33). Unfortunately, no specific conclusions can be drawn from the male 
validation because of missing data.  

Table 21. Sit-up performance model and TIC validation results.  

Men Women  

Group G 
(performance 
on derivation 

dataset) 

Group F 
(performance 

on cross-
validation) 

Group G 
(performance 
on derivation 

dataset) 

Group F 
(performance 

on cross-
validation) 

Prognostic 
Accuracy 74% No Previous 

Activity Data 81% 84% 
TIC 

PLR (95% CI) 2.1 (1.4 to 
3.0) --- 1.9 (0.6-5.9) 5.8 (0.9-38.2) 

Prognostic 
Accuracy 75% 80% 66% 74% 

Model 
PLR (95% CI) 1.7 (1.2-2.5) 3.7 (2.1-6.2) 1.7 (1.2-2.3) 3.0 (2.0-4.7) 

For males, two factors were used for the TIC: number of 1st PFT sit-ups and self-reported 
previous activity. For females, number of 1st PFT sit-ups and height were the two significant 
TIC factors. For the model, number of 1st PFT sit-ups, height, weight, and regimen were 
factors. See Section 2.1.2. 

 

2.2.3 Push-up Performance 
 A similar result is seen with the push-up model validation (Table 22). Again, the 
model was validated by applying the model to dataset Group F but with the same training 
regimen as Group G. And as before, accuracy increased substantially in both the male and 
female validation datasets, with both genders having a prognostic accuracy greater than or 
equal to 85%. Because both sit-up and push-up model accuracy increased when applied to 
Group F and yet was well below accuracy levels seen in the running model, it calls into 



question whether Group G is a valid dataset for sit-ups and push-ups. Additional datasets 
will need to be analyzed to see if these models continue to have inconsistent predictions.  

Table 22. Push-up performance model and TIC validation results.  

Men Women  

Group G 
(performance 
on derivation 

dataset) 

Group F 
(performance 

on cross-
validation) 

Group G 
(performance 
on derivation 

dataset) 

Group F 
(performance 

on cross-
validation) 

Prognostic 
Accuracy 75% No Previous 

Activity Data 85% 87% 
TIC 

PLR (95% CI) 2.3 (1.7-3.2) --- 6.4 (4.8-8.5) 4.7 (1.1-20.6) 

Prognostic 
Accuracy 73% 86% 73% 85% 

Model 
PLR (95% CI) 1.9 (1.4-2.6) 4.4 (2.0-10.1) 0.6 (0.2-2.1) 3.4 (0.8-14.8) 

For males, three factors were used for the TIC: number of 1st PFT push-ups, self-reported 
previous activity, and age. For females, only height was a significant TIC factor. For the 
model, number of 1st PFT push-ups, height and regimen were factors. See Section 2.1.2.  

 

2.2.4 Stress Fracture 
 To validate the stress fracture model, input values from dataset Group A and C (see 
Appendix) were entered into the model and the prediction was compared to the observed 
injury rate at the end of training. Group C was composed of 1,286 males and Group A were 
2,963 females undergoing U.S. Marine Corps BCT at San Diego and Parris Island, respec-
tively. Unfortunately, both datasets only contained injury information for those that passed 
BCT—recruits with severe injuries or were unfit the pass the final PFT were not included 
in either dataset. Thus, because of limitations in the available datasets the validation accu-
racy results are not reflective of the incoming recruit population.  

 The results (Table 23) show that model accuracy drops when applied to the validation 
dataset but that the positive likelihood ratio becomes significantly greater than one. In 
addition, it should be noted that validation of the TIC method was not done because no 
significant factors were found in the original dataset (see Section 2.1.4). Thus, while the 
model’s accuracy dropped with the validation dataset, it was able to create both a model 
and retain most the model’s predictive capacity when applied to the novel dataset.  



Table 23. Stress fracture model validation results.  

Men Women  

Group G 
(performance 
on derivation 

dataset) 

Group C 
(performance 

on cross-
validation) 

Group G 
(performance 
on derivation 

dataset) 

Group A 
(performance 

on cross-
validation) 

Prognostic 
Accuracy NS --- NS --- 

TIC 
PLR (95% CI) --- --- --- --- 

Prognostic 
Accuracy 94% 82% 73% 72% 

Model 
PLR (95% CI) 3.2 (0.8-12.9) 2.5 (1.2-5.1) 1.5 (0.9-2.5) 1.8 (1.3-2.3) 

No significant TIC factors were found for either gender. For the model, self-reported previous 
activity and number of days of aerobic exercise per week as well as BMI and regimen were 
factors. See Section 2.1.4.  

 

2.2.5 Lower-body Overuse Injury 
 To validate the overuse injury model, input values from dataset Group A and C (see 
Appendix) were entered into the model and the prediction was compared to the observed 
injury rate at the end of training. These were the same validation groups as those used for 
the stress fracture model and, as before, only contain information on those that passed 
BCT. This is most reflective in the men, where none of those that passed BCT sustained an 
overuse injury (Table 24).  

 In general, the results are encouraging but not conclusive. The lack of a complete 
validation dataset hampered the attempt at showing the robustness of the model for the 
male group. However, the model did perform very similarly to the TIC when validating with 
the women datasets.  



 

Table 24. Overuse injury model and TIC validation results.  

Men Women  

Group C 
(performance 
on derivation 

dataset) 

Group G 
(performance 

on cross-
validation) 

Group A 
(performance 
on derivation 

dataset) 

Group G 
(performance 

on cross-
validation) 

Prognostic 
Accuracy 95% No 1st Push-

up measured 88% 75% 
TIC 

PLR (95% CI) 4.2 (0.5-34.9) --- 2.7 (0.8-9.3) 1.6 (1.2-2.2) 

Prognostic 
Accuracy 88% 70% 87% 76% 

Model 
PLR (95% CI) 1.6 (0.6-4.1) No inj 

reported 3.9 (1.3-11.5) 1.5 (1.0-2.1) 

For males, one factor was used for the TIC: number of 1st PFT push-ups. For females, only 
BMI was a significant TIC factor. For the model, the self-reported activity level and number of 
aerobic days per week as well as BMI and regimen were used.  

 

2.3 Model Refinement 
 From the knowledge gained from the previous model development, it is apparent that 
certain modifications may improve model accuracy. This section describes an update to the 
sit-up model. For sit-ups, the TIC analysis benefited from the inclusion of height as a factor, 
a variable not directly utilized in the performance model because it was not identified in the 
literature review. Thus, the sit-up performance model was modified to directly account for 
height.  

2.3.1 Sit-Up Performance 
 The previous TIC analysis of female sit-ups (see page 11) suggests that height is an 
important factor where being tall is detrimental to passing the Final APFT Sit-Up. The 
inverse relationship between height and performance can be explained from a biomechani-
cal perspective. Sit-ups require a torque to be produced about the hip to lift the head, arms, 
and trunk (HAT) and taller individuals have to exert a greater torque to perform the same 
movement as a shorter individual due to the added “leverage.”  

2.3.1.1 Methods 
 For this model, several assumptions regarding torque, height, and weight are made: 

• The maximum possible sit-up rate is determined, in part, by the maximum possi-
ble torque a person is capable of generating about the hip from the abdominal and 
hip flexor muscles 



• The maximum possible torque (i.e., through perfect training) is the same for all 
people 

• The maximum possible sit-up rate can be estimated from a biomechanical analysis 
involving the maximum possible torque, and the person’s estimated HAT mass 
and center of mass location.  

 For the biomechanical analysis, we assume the upper-body can be modeled as a point 
mass and that the maximum angular acceleration (and torque) occurs when the body is 
horizontal (bottom of sit-up) as shown in Figure 7.  

 
Figure 7. A free-body diagram of the sit-up. 

The head, arms, and trunk (HAT) are subject to the force due to gravity (mg) and the torque 
(M) acting with moment arm, L.  

 

 From Figure 7, we can write the equation of motion to determine the angular 
acceleration (α, rad/s2) about the hip from the torque and HAT inertial properties.  

 ( )M mgL m L Lα− =  (16) 

where M is the torque produced about the hip, m is the mass of the HAT, L is the distance 
(m) from the HAT mass to the hip, and g is gravity (9.81 m/s2).  

 Based on the assumption that everyone is capable of generating the same maximum 
torque, it is possible to determine the angular acceleration of an individual as a function of 
HAT properties and the acceleration of another individual: 
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where subscript “1” and “2” denote two different individuals. If we assume the individual 
“1” is the average person, then performance level P (see Equation (7)) can be redefined as a 
ratio of an individual’s predicted α2 and α1, the acceleration for the average person.  

 2

1

P α
α

=  (18) 

 Thus, the new P reflects an individual’s ability to perform relative to the average 
person based on HAT height and weight differences. Shorter, lighter individuals will have a 
theoretical higher level of attainable sit-up performance since the applied maximum torque 
will cause a greater acceleration and, hence, sit-up rate.  

 To use this equation, an average person’s α1 and HAT properties (L1, m1) need to be 
estimated. In addition, an individual’s HAT properties (L2, m1) are also needed. To estimate 
α1, we note that the maximum sit-up rate was estimated to be 150 reps/min from World 
Record performances and assume the average person is capable of 120 reps/min or 2 sit-
ups/s with ideal training. If a proper sit-up causes the HAT to follow a 90 degree arc, with a 
peak angular velocity at 45 degrees, and we assume a saw-tooth velocity profile, then the 
angular velocity vs. time plot can be represented as shown in Figure 8.  

 
Figure 8. The estimated saw-tooth angular velocity profile for performing a single sit-up 

at 120 reps/min.  

νmax is the maximum angular velocity. Because of the assumed saw-tooth profile, angular 
acceleration α can be estimated from νmax and the slope of the “saw-tooth.” 

 

 By definition, angular displacement, velocity, and time are related by: 

 D Vdt= ∫  (19) 

where D (rad) is angular displacement, V (rad/s) is angular velocity, and t (s) is time. Thus, 
the estimated νmax for the average person’s sit-up is: 

time 

Angular 
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 And α1is estimated as:  

 2max
1 1

8

0 32 / sec
sec

dv rad
dt

να π−
= = =  (21) 

 To estimate the HAT inertial properties (mass and distance to the hip joint), we 
turned to cadaveric studies were regressions were developed based on overall height (H) 
and body weight (mbody). See Figure 9 and Table 25. We assume that the average male is 
1.753 m and weighs 75 kg. The average female is assumed to be 1.615 m and 60 kg. Using 
the same dosage (Equation (8)) and performance response (Equation (6)) as before, the 
model parameter k1 was re-optimized to account for the new P estimation in order to 
compute P for sit-ups. Males and females were analyzed separately.  

 

 
Figure 9. Free-body diagram to determine the mass and location relative to the hip for the 

head, arms and trunk (HAT).  
Note: masses and distances for the arms and trunk were combined. It was assumed that the 
mass of the arms was located at the shoulder joint during the sit-up. The trunk includes the 
head. Arm and trunk masses and lengths were estimated from cadaveric studies.  
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Table 25. Estimates of the head, arms, and trunk (HAT) mass and distance from the hip 
joint.  

From cadaveric studies (Clauser et al. 1969; Drillis 1958) and Figure 9. 

Source: (Drillis 1958) 

Stature or Total Height H 

Floor-Hip Length 0.530 H 

Top of Head-Hip Length (1-0.530)H = 0.47 H 

 

Hip-Shoulder Length 0.288 H 

Source: (Clauser et al. 1969) 

Trunk & Head Mass mtrunk = 0.5801 mbody 

Trunk & Head Length Ltrunk = 0.4079 Top of Head-Hip Length 

Arms Mass marms = 2 x 0.0490 mbody 

 

Arms Length Larms = Hip-Should Length 

HAT (Head, Arms, Trunk) Properties 

HAT Mass mHAT = mtrunk + marms  

HAT Length LHAT = (mtrunk Ltrunk + marms Larms) / mHAT 

 

2.3.1.2 Results 
 As before, to estimate model accuracy, model predictions were calculated using input 
values from dataset Group G (see Appendix), which contains data from approximately 681 
male and 336 female recruits who underwent U.S. Army BCT circa 1997. Input variables 
for sit-ups were the 1st PFT sit-up count, gender, height, weight, and daily sit-up number. 
Accuracy was assessed by comparing model predictions to the observed Final PFT results. 
In addition, model predictions are compared to those derived from the statistically-based 
TIC procedure mentioned previously (see Statistical Methods Overview, pg. 4).  

Sit-ups: Male Recruits 
 The initial prevalence (overall Final PFT failure rate) was 11% for the males on the 
final PFT sit-up exercise. The previously performed TIC analysis identified initial PFT sit-
up number and previous activity level (self-rated questionnaire data) as significant predic-
tors. Both the TIC and the previous model predictions had comparable prognostic accuracy 
(74% and 75%, respectively). The updated model prognostic accuracy was improved (88%). 
However, positive likelihood ratio (PLR) and 95% confidence interval was not as good, 1.3 
(0.3-5.5). See Table 26 (and Table 6 for comparison).  



Table 26. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of 
the two sit-up performance models for male recruits undergoing basic combat training at 

various Army training sites (Group G).  

Final PFT Sit-Up Final PFT Sit-Up 
TIC 

Fail Pass 
MODEL 

Fail Pass 

Any one or 
more 17 118 Pred Fail 20 98 

None 16 359 

 

Pred Pass 37 380 

 

Final PFT Sit-Up UPDATED 
MODEL Fail Pass 

Pred Fail 2 14 

Pred Pass 51 459 
For the updated performance model, accuracy was similar but not as good compared to the 
previous analyses (Sensitivity = 0.04; Specificity = 0.97; Positive pretest probability = 10%; 
Positive post-test probability = 13%; Negative post-test probability = 10%). Number of 
samples in TIC and model differ due to missing data. See Table 6 as well.  

 

Sit-ups: Female Recruits 
 The initial prevalence (overall Final PFT failure rate) was 21% for the females on the 
final PFT sit-up exercise. The previously performed TIC analysis identified initial PFT sit-
up number and height as significant predictors. The TIC performed better than the previ-
ous model (prognostic accuracy of 81% and 66%, respectively). The updated model prognos-
tic accuracy was improved substantially (78%). However, positive likelihood ratio (PLR) and 
95% confidence interval was not as good, 2.4 (0.9-6.3). See Table 27 (and Table 7 for 
comparison).  



 

Table 27. A comparison of the accuracy of a Test Index Cluster (TIC) analysis to that of 
the two sit-up performance models for female recruits undergoing basic combat training 

at various Army training sites (Group G).  

Final PFT Sit-Up Final PFT Sit-Up 
TIC 

Fail Pass 
MODEL 

Fail Pass 

Any one or 
more 17 118 Pred Fail 20 98 

None 16 359 

 

Pred Pass 37 380 

 

Final PFT Sit-Up UPDATED 
MODEL Fail Pass 

Pred Fail 6 10 

Pred Pass 49 208 
For the updated performance model, accuracy improved compared to the previous analyses 
(Sensitivity = 0.11; Specificity = 0.95; Positive pretest probability = 20%; Positive post-test 
probability = 38%; Negative post-test probability = 19%). Number of samples in TIC and 
model differ due to missing data. See Table 7 as well.  

2.3.1.3 Validation 
 As before, the updated sit-up model was validated by applying the model to dataset 
Group F but with the same training regimen as Group G. For both males and females, the 
updated model accuracy increased slightly when applied to the validation dataset. See 
Table 28. Overall, the updated model performed very similarly between the two datasets, a 
feature not seen with the original model (or TIC).  

Table 28. Sit-up results for the updated and original models.  

Men Women  

Group G 
(performance 
on derivation 

dataset) 

Group F 
(performance 

on cross-
validation) 

Group G 
(performance 
on derivation 

dataset) 

Group F 
(performance 

on cross-
validation) 

Prognostic 
Accuracy 88% 89% 78% 82% Updated 

Model 
PLR (95% CI) 1.3 (0.3-5.5) 1.9 (0.3-14.3) 2.4 (0.9-6.3) 2.8 (0.8-10.1) 

Prognostic 
Accuracy 75% 80% 66% 74% 

Model 
PLR (95% CI) 1.7 (1.2-2.5) 3.7 (2.1-6.2) 1.7 (1.2-2.3) 3.0 (2.0-4.7) 

 



2.4 Model Conclusions 
 In this report the development of four new models was described (sit-up and push-up 
performance; stress fracture and overuse injury) and validation results for the models as 
well as the running model developed previously were presented. While not conclusive, the 
results were generally favorable with the models having a similar accuracy as a pure statis-
tically-based approach, especially when applied to a novel validation dataset.  

 Model development was based on developing a dose-response algorithm that took into 
account primary risk factors identified through statistical means and incorporating them 
into a simplified physiologically-based model. There are several advantages to this 
approach—risk factors can be integrated in a meaningful and often nonlinear way, biome-
chanical concepts are accounted for, and training regimen is incorporated directly. All these 
advantages should allow this approach to have similar accuracy to a statistical method with 
the added advantage of being able to predict outcomes to other populations and novel 
training regimens. In addition, the time course of performance and injury likelihood 
throughout training are a fundamental component of the model, a feature that would be 
very difficult to incorporate into a purely statistical model.  

 There were several issues with the datasets that were beyond the control of this 
project, which limited the ability to develop and validate the models. First, the datasets 
(acquired post hoc from other research studies) often collected different measures, making 
it difficult to find two datasets that contain the same input and output measures. Second, 
most of the datasets lack sufficient training regimen details to allow the models to develop 
algorithms and parameter values that are capable of predicting injury and performance 
across different regimens (i.e., many of the datasets contained no marching distances). 
Third, some of the datasets (U.S. Marine Corps) only contain measures from those that 
passed BCT, making it difficult to assess model performance at predicting the negative 
outcomes of injury and performance. We readily acknowledge that any data collected in the 
field on a large population such as that seen in BCT is a major undertaking, requiring 
many man-hours of preparation, data collection, and post-analysis. Steps were taken to 
incorporate the datasets including the use of questionnaire data to estimate VO2 and 
making assumptions about the training regimen.  

 Clearly one of the key factors in improving model predictive accuracy is to acquire 
additional data that has more detailed training regimen measures. This would allow the 
models to better account for current and new performance factors, improve the model algo-
rithms, and update the dosage calculations. In addition, an improved model from better 
regimen details should allow the model to extrapolate to different training regimens with-
out the loss in accuracy currently seen.  



 

2.4.1 Summary Tables 

Table 29. Performance and injury model algorithm summary tables.  

Includes response model formula, dosage calculation, and factors accounted for in the models. 

Performance Models 

Response Model P = P0 + (Pmax – P) g1⊗W 

Dosage W = Wrate x duration x exp(b x Wrate) 

Run Sit-Up Push-up 

Factors 
Initial Runtime 

Height 
Weight 
Gender 

Regimen 

Initial Sit-ups 
Gender 
Height 
Weight 

Regimen 

Initial Push-ups 
Gender 

Regimen 

Injury Models 

Response Model Pinj = A x sqrt(D – Doffset) 

Dosage D = (“damage”/dist) x cumulative dist x SFdist

Stress Fracture Overuse Injury 

Factors 
Previous Activity Level 
Previous Aerobic Work 

BMI 
Gender 

Regimen 

Previous Activity Level 
Previous Aerobic Work 

BMI 
Gender 

Regimen 

 



Table 30. Performance model validation summary tables for both males and females.  

Performance Models—Males 

Run Sit-Up Push-up 
Prevalence

4% 11% 14% 

Prognostic 
Accuracy 88% 74% 75% 

TIC 
PLR (95% CI) 4.5 (2.6-7.9) 2.1 (1.4-3.0) 2.3 (1.7-3.2) 

Prognostic 
Accuracy 88% 75/88% 73% 

TOP/Updated 
TOP PLR (95% CI) 2.6 (1.1 to 6.3) 1.7 (1.2-2.5)/1.3 

(0.3-5.5) 1.9 (1.4-2.6) 

Performance Models—Females 

Run Sit-Up Push-up 
Prevalence

8% 21% 5% 

Prognostic 
Accuracy 80% 81% 85% 

TIC 
PLR (95% CI) 2.1 (1.1 to 4.1) 1.9 (0.6-5.9) 6.4 (4.8-8.5) 

Prognostic 
Accuracy 89% 66/78% 73% 

TOP/Updated 
TOP PLR (95% CI) 2.3 (0.5 to 9.4) 1.7 (1.2-2.3)/2.4 

(0.9-6.3) 0.6 (0.2-2.1) 

Tables include the TIC results for comparison.  
 



 

Table 31. Injury model validation summary tables for both males and females.  

Injury Models—Males 

Stress Fracture Overuse Injury 
Prevalence

3% 4% 

Prognostic 
Accuracy --- 95% 

TIC 
PLR (95% CI) --- 4.2 (0.5-34.9) 

Prognostic 
Accuracy 94% 88% 

TOP 
PLR (95% CI) 3.2 (0.8-12.9) 1.6 (0.6-4.1) 

Injury Models—Females 

Stress Fracture Overuse Injury 
Prevalence 

13% 9% 

Prognostic 
Accuracy --- 88% 

TIC 
PLR (95% CI) --- 2.7 (0.8-9.3) 

Prognostic 
Accuracy 73% 87% 

TOP 
PLR (95% CI) 1.5 (0.9-2.5) 3.9 (1.3-11.5) 

Tables include the TIC results for comparison where possible.  



3. Software Application Development 

 
 

Figure 10. The TOP web-site home page.  
The home pages serves as a gateway to TOP 1.1, the latest version of the software that 
incorporates the previously described performance and injury models, and other features 
such as a PFT Calculator.  

3.1 Development Approach 
 In addition to developing the performance and injury models, a web-based software 
program was implemented using many of the features described in the conceptual mock-up 
from the previous report (Sih and Shen 2006). The objective of the software is to demon-



strate the feasibility of the model as a tool to help reduce injuries and maximize 
performance. Specifically, the goal is to develop software that will:  

• Assess an individual’s or group’s injury risk in BCT 

• Assess an individual’s or group’s poor performance risk in BCT 

• Predict the time history of performance enhancement and injury risk 

• Allow the evaluation of different training regimens 

 Also, additional features and updates were incorporated into TOP version 1.1, giving 
the program more utility and accuracy. Items include the inclusion of two additional infor-
mation access web pages: a Basic Combat Training Education page and an access-limited 
DeveloperNet section where the data and documentation associated with the TOP project 
can be accessed. Both a PFT Score and a Body Fat Standards Calculator were also added. 
Rather than displaying as much information on the various aspects of BCT and the compo-
nents of the TOP program, the Home Page only contains a brief description and is now used 
as a gateway to different sections of the program. (Figure 10) 

Table 32. TOP Software release dates.  

Version Release Date 

TOP 0.1α Apr 2006 

TOP 1.0 Nov 2006 

TOP 1.1 Aug 2007 

 

 To provide the widest range of users to access the software, the original mockup was 
refined with four different user types defined, including goals, required model inputs, and 
desired outputs (Table 33). Depending on the type of user, we envision different levels of 
software functionality. Specifically, the users have been divided in the following manner:  

 Basic User: Interested in comparing their individual performance progress and injury 
likelihood during BCT to their peers. The output displays their individual scores and the 
average scores of their peers. This user can not change the training regimen, but can enter 
and modify their anthropometric data and physical fitness test (PFT) scores. Likely basics 
users are individual soldiers. 

 Mid-Level User: Focused with the performance and injury outcomes of a small group 
of individuals (2-30) involved in a training regimen. The output identifies individuals at 
high risk for performance failure or injury. This user can modify the properties of the indi-
viduals in the group and the training regimen. Likely mid-level users are drill sergeants 
and fitness advisors.  



 

Table 33. TOP User Types.  

Possible goals, needs, required inputs, and desired outputs from four potential users of a software package that incorporates the 
performance and injury models developed.  

Goals/Questions Needs Inputs Outputs
Basic User (Individual Soldier)

Am I on track to pass FPFT? Simple Personalized Prediction Basic (Ht, wt, age, gender) Relative Ranking
Might I be injured? What kind of injury? Simple Interface (buttons, pictures) Key Fitness/Inj/Anthro Measures Graphs of progress & goals
How is my fitness relative to others right now? Pre-fabricated Regimens Simple History/Inj Questionnaire

Mid-Level User (Drill Sgt/Fitness Trainer)
Who is unfit, likely to not pass FPFT, need attention? Simple Indiv Results for < 30 people Basic (Ht, wt, age, gender) Tables of indiv predictions (r/y/g)
As a group, are they on track to pass FPFT? Limited Regimen Adjustment (sliders) Key Fitness/Inj/Anthro Measures Graphs of indiv progress & goals
Who is more likely to be injured? Automated as much as possible Pre-fabricated Regimens
If I make them do "X", what happens to fitness? Injury?

Group Level User (Company Commander)
What % of recruits will pass FPFT? Group Results for > 500 recruits Same as Mid-Level Summary Tables only
What % of recruits will be injured? Limited Regimen Adjustment (sliders) Graphs of pop. progress & goals
How will general regimen changes affect % passing?
How will general regimen changes affect % injured?
What regimen changes will maximize fitness, minimize injury? Detailed Regimen Adjustment Detailed Regimen Info Graphs of pop. progress & goals
How much deviation from regimen "norm" is ok for fitness? Optimization Scheme Acceptable PFT, injury rates
How much deviation from regimen "norm" is ok for injury?

Researcher
How does different regimens affect specific fitness measures? Test different regimens Detailed everything Detailed outputs, CI's
How does different regimens affect specific injuries? Test different populations Access to model parameters
How accurate are the predictions/models? Detailed Regimen Adjustment
What exercises are "equivalent"? Detailed Recruit Info  



 Group-Level User: Concerned with the average performance and injury outcomes of 
large groups of individuals involved in different training regimens. The output shows the 
average outcomes of the different training regimens, which allows the user to compare the 
metrics of each regimen. This user can change the training regimen and has access to many 
different groups of individuals and their average properties. Likely group-level users are 
Base Commanders and TRADOC (Training and Doctrine Command) personnel.  

 Research User: Interested in performance and injury outcomes from the individual 
level to the group level and the effect of training regimens on those outcomes. Additionally, 
these users may be interested in examining or modifying the underlying models that 
predict the training outcomes. The output provides the detailed results of the individuals 
and the groups. This user has the most access to the training regimens, properties of the 
individuals, and model parameters. Likely research users are individuals at military 
research laboratories. 

3.2 Database Development 
 Another component that needs to be incorporated for a functional implementation of 
the models into a software package is a database schema. The schema is critical in that it 
needs to be able to store a wide variety of data for the models to use yet be flexible to allow 
users to modify and update data easily. Specifically, the schema must store user inputs and 
subject characteristics. In addition, the training regimen, which is time-based, must be 
stored in a manner that allows users to make broad changes (i.e., daily or weekly) yet 
provide a daily training schedule to the model.  

 To incorporate these characteristics, the database was partitioned into two separate 
sections—subject information and training regimen. The subject database is a typical 
schema consisting of a Subject ID, anthropometry values (gender, height, weight, etc.), 
previous injury history, questionnaire answers, and PFT scores. The training regimen 
schema is much more complex, with each event or exercise broken into separate move-
ments, which are linked to the schedule through weekly and daily “multiplier” tables to 
allow users to increase of decrease the regimen easily (Figure 11). For each event, specific 
information such as the day, name, description, and number of repetitions are recorded. 
(There can be any number of events on a day.) The event is then broken into specific move-
ments such as running or sit-ups and the specific parameters to describe the movement is 
stored (e.g., run distance or number of sit-ups). To control the amount of exercise done, the 
event is adjusted with three values: an event, day, and week multiplier. These values can 
be modified by individuals using the software and adjust the total amount of each move-
ment done on each day. Thus, referring to Figure 11, the total number of sit-ups for an 
exercise on a given day is equal to the number sit-ups in the “Sit-Up Table” times the 



number of reps for that event (NReps) times the Event, Day and Week Multipliers. The 
total number of sit-ups for the day is the sum of all sit-ups from the different events on that 
day.  

 Note also that a nonmodel feature was added to the software for added value: a body 
fat and height/height standards calculator calibrated for the U.S. Army. This data is also 
stored in the database. Subsequent software updates will incorporate standards calculators 
from other armed forces.  

•RegimenID (Number)
•(Regimen) Name
•(Regimen) Description
•(Military) Branch
•(Original) Source
•DateStr (Date Entered)
•(TOPRegimen) Version
•(TOPRegimen) Location

Main Table

•RegimenID
•Day
•Event (Number)
•Name
•Description
•BulletList
•Note
•NReps
•SubGroupOnOff
•EventType
•DisplayType

Event Table

•RegimenID
•Day
•Event
•Description
•Distance
•Vel
•Time
•ExtraLoad
•MultVarName

Walk Table

•RegimenID
•Day
•Event
•Description
•Distance
•Vel
•Time
•ExtraLoad
•MultVarname

Run Table

•RegimenID Number
•(Training) Day
•Name
•Description

Regimen Day Table

•RegimenID
•Day
•Event
•Description
•Number (of situps)
•Time (allotted time)
•MultVarName

Sit-Up Table

•RegimenID
•Day
•Event
•Description
•Number (of pushups)
•Time (allotted time)
•MultVarName

Push-Up Table

•RegimenID
•Week
•StartDay
•EndDay
•StartDayName (Mon, etc.)
•Name
•Description

Regimen Week Table

Movements

Event or Exercise

Timing

•RegimenID
•SubGroup (Number)
•Name
•Description

SubGroup Table

SubGroupSubGroup

•RegimenID
•Day
•EventType
•SubGroup
•DayMultiplier

SubGroup Day Table

SubGroup Day MultiplierSubGroup Day Multiplier

•RegimenID
•Day
•Event
•SubGroup
•EventMultiplier

SubGroup Event Table

SubGroup Event MultiplierSubGroup Event Multiplier

•RegimenID
•Week
•EventType
•SubGroup
•WeekMultiplier

SubGroup Week Table

SubGroup Week MultiplierSubGroup Week Multiplier

•EventType (Number)
•Name

SubGroup Week Table

Event TypeEvent Type

 
Figure 11. The database schema to store training regimen data.  

To allow training dosages to be input into the models, each event or exercise is broken into 
movements. In addition, event, day and week “multiplier” values are stored and accessed via 
the software interface to allow users to make adjustments to the training regimen.  

 

3.3 TOP Implementation 
 TOP 1.1 is the main component of the software where the previously described 
performance and injury models were implemented. The following figures are screen shots 
from TOP Software Version 1.1 to demonstrate some of the key features of the software, 



including the graphical user interface, input screens, and model prediction reports. Two 
user types have been implemented: Basic and Mid-Level.  

3.3.1 Basic Level User 
 The interface for the Basic Level User is designed to allow individuals to run the 
program with little or no instruction. Graphics are used where possible and instructions for 
each section are always in view.  

 
Figure 12. Basic Level User—Main Page.  

Basic Users can navigate to four different sections to input and/or modify data used for the 
model predictions.  

 



 
 

Figure 13. Basic Level User—Training Schedule sub-page.  
Basic Users can view the planned training regimen.  

 



 

 
 

Figure 14. Basic Level User—Medical History sub-page.  
Basic Users can input their basic body measures such as height and weight as well as 
specific measures required for calculation of the Body Fat Standard. Injury reporting is also 
stored in this section.  

 



 

 
 

Figure 15. Basic Level User—Fitness and Lifestyle Background sub-section.  
Basic Users can answer specific questions that help the program adjust the models to each 
individual’s exercise history. Additional questions can be added if required as models are 
refined.  

 



 

 
 

Figure 16. Basic Level User—Physical Fitness Scores sub-section.  
Basic Users can enter their PFT results. A PFT calculator has been added for convenience.  

 



 
 

Figure 17. Basic Level User—Results sub-section.  
Basic Users can view the model predictions and Body Fat Standards results. Emphasis was 
placed on simplicity and graphical displays.  

 



 
Figure 18. Printable report summarizing the Basic User model results.  



 
Figure 19. Back page of the printable Basic User report.  



3.3.2 Mid-Level User 
 The Mid-Level User interface contains fewer graphics and is more compact, allowing 
additional result details to be displayed after the model predictions have been made. 
Despite the compact interface, more features are accessible. Subjects are categorized into 
Groups, training regimens can be adjusted, and different analyses preformed. The results 
are also presented in a more compact form, allowing user’s to quickly identify the overall 
status of the group as well as identify high risk individuals.  

 
 

Figure 20. The Subject selection page for the Mid-Level User.  
Subjects are categorized into Groups. Individual subject Medical History, Lifestyle & Fitness 
Questionnaire answers, and PFT Scores can be accessed as well.  

 

 
 

Figure 21. The Regimen selection page for the Mid-Level User.  



Training regimen details can be viewed and edited from within the Mid-Level User program.  

 
 

Figure 22. The Analysis selection page for the Mid-Level User.  
The Mid-Level User has the flexibility to select the types of models to be run and which 
subjects to use.  



 
 

Figure 23. The Mid-Level User Results page.  
Model results are categorized and individuals with different predicted outcomes are auto-
matically characterized.  

3.4 DeveloperNet: Data Storage & Access 
 The purpose of this section is to make available all of the datasets, documents, and 
presentations related to the TOP project. To accomplish this, the available data was organ-
ized into three sections: survey data, image data, and reports/presentation materials. 
Survey data contains raw data files from studies involving a large number of subjects. The 
information contained in the files differs between studies so each file also contains a short 
summary paragraph. These are the datasets used to optimize and validate the TOP models. 



Image data is a depository for both raw and processed image files as well as statistical 
analyses files. Reports and presentation materials include annual reports, official military 
documents related to BCT, and slides of presentations involving the TOP Project. All files 
are downloadable but require a user login and password for security.  

 
Figure 24. The DeveloperNet Main Page.  

The page contains two main sections—Survey Data and Documentation. An additional 
Image Data section is planned to allow access to bone image data that will be used to 
develop more advance versions of the stress fracture model.  



 

 

 
 

Figure 25. DeveloperNet Survey Data sub-window.  
This sub-window allows users to view background information, publications, comments and 
summary statistics of the dataset. Clicking on the links downloads the data.  

 

3.5 Basic Combat Training Background Information Site 
 The purpose of the BCT Background web site is to inform new recruits about the 
causes of BCT attrition and how to minimize their risk of failing BCT in a simple, straight-
forward manner. To accomplish this, icons and images are used as much as possible. Topics 
include risk factors for stress fractures, overuse injuries, and acute injuries as well as 
Physical Fitness Testing procedures and low performance factors.  



 
 

Figure 26. The injury section of the BCT Background web site. 
This section features three classes of injuries—stress fractures overuse injuries, and acute 
injuries. Clicking on each type of injury leads to a sub-window that gives additional details 
about the injury as well as common risk factors.  



 

 
 

Figure 27. The fitness testing section of the BCT Background web site.  
This section contains detailed information about each of the three exercises used in the U.S. 
Army Physical Fitness Test.  

 



Table 34. Stress fracture risk factor icons and information presented in the BCT Back-
ground Web Site.  

 
Risk Level: Low   Severity: High 

Definition 

Caused by repeated loading of a bone through running and marching. The most 
commonly affected body part is the lower leg or tibia. Symptoms may include sharp 
pain while walking, swelling, and localized tenderness. Although uncommon (< 5 %), 
recovery from this injury requires 6-8 weeks of nonexercise and in many cases, 
prevents you from completing BCT. 

Risk Factors (Bennell et al. 1999; Ross and Woodward 1994; Taimela et al. 1990) 

 
Over Training 

In addition to your fitness level, it is believed that one of the major causes of stress 
fractures is the sudden increase in running and marching either during BCT and/or 
those that adopt an overly strenuous pre-BCT workout program. 

 
Anthropometry Those with anthropometric irregularities such as leg length discrepancies and low 

bone density are more likely to be injured. 

 
Previous Injury You are more likely to have another stress fracture if you have already had one before 

BCT. 

 
Smoking Those that smoke regularly are more likely to have a stress fracture. 

 
Female Females, in general, are more likely to have stress fractures. In addition, for females, if 

you have menstrual irregularities, you may be more prone to stress fractures. 

 



 

 

Table 35. Overuse injury risk factor icons and information presented in the BCT 
Background Web Site.  

 
Risk Level: Medium   Severity: Medium 

Definition 
Caused by repeating the same exercises too many times. This injury can occur on at 
any joint or muscle although most injuries occur in the foot region. This is a common 
injury (50-60%) with a wide range of symptoms, severity, and recovery time. 

Risk Factors (Almeida et al. 1999; Hartig and Henderson 1999; Jones et al. 1994; Jones and Knapik 1999; 
Ross and Woodward 1994) 

 
Over Training Performing a large number of the same or similar exercises without sufficient recovery 

can lead to overuse injuries. 

 
Previous Injury You are more likely to have another stress fracture if you have already had one before 

BCT. 

 
Flexibility Those with limited flexibility or those that are very flexible are more prone to overuse 

injuries. 

 
Female In general, females are more prone to overuse injuries. 

 

 

Table 36. Acute injury risk factor icons and information presented in the BCT 
Background Web Site.  

 
Risk Level: Low   Severity: Low 

Definition 
An injury due to a sudden mishap or accident. This type of injury is primarily random 
and can inflict injury on any part of the body. This is a rare injury (~2%) and the 
severity depends on the situation. 

Risk Factors 

 
Fatigue A likely cause of acute injuries is a lack of mental concentration due to fatigue. 

 
Over Training Over training can also increase the chances of an acute injury as muscles become 

tired and coordination decreases. 

 



 

Table 37. Push-up performance factors presented in the BCT Background Web Site.  

 
Failure Rate: Low 

Information Number of reps required depends on gender & age.  
Risk Factors 

 
Initial APFT 

A low push-up score during the first or initial APFT is indicative of the amount of 
additional fitness needed to pass the final APFT at week 8. Those with lower initial 
APFT scores have a harder time passing the final APFT. 

 
Proper 

Technique Proper technique is important to prevent injury and/or disqualification.  

Official instructions and tips from (Headquarters Department of the Army 1998) are also 
presented.  

 
 

Table 38. Sit-up performance factors presented in the BCT Background Web Site.  

 
Failure Rate: Low 

Information Number of reps required depends on gender & age.  

Risk Factors 

 
Initial APFT 

A low sit-up score during the first or initial APFT is indicative of the amount of 
additional fitness needed to pass the final APFT at week 8. Those with lower initial 
APFT scores have a harder time passing the final APFT.  

 
Proper 

Technique Proper technique is important to prevent injury and/or disqualification.  

Official instructions and tips from (Headquarters Department of the Army 1998) are also 
presented.  

 



 

Table 39. Run performance factors presented in the BCT Background Web Site.  

 
Failure Rate: Low 

Information Runtime required depends on gender & age.  
Risk Factors 

 
Initial APFT 

A low run score during the first or initial APFT is indicative of the amount of additional 
fitness needed to pass the final APFT at week 8. Those with lower initial APFT scores 
have a harder time passing the final APFT. 

 
Ht, Wt, BMI 

Those with a high body mass index (BMI) are considered heavy for their height and 
may not be a physically fit as those with an average BMI. In addition, a low BMI may 
indicate insufficient muscle strength to complete the run in the allotted time. Note that 
because BMI does not measure body fat or muscle content, it is not uncommon for low 
and high BMI individuals to pass the APFT. 

 
Proper 

Technique Proper technique is important to prevent injury and/or disqualification.  

Official instructions and tips from (Headquarters Department of the Army 1998) are also 
presented.  

 



4. Conclusions 

 This report describes the development of the TOP Model, which is a set of models to 
predict injury and performance outcomes from a training regimen such as BCT. Several 
models were developed, including sit-up, push-up and run performance models as well as 
stress fracture and overuse injury models. They were developed and based on concepts 
found in the literature and through the analysis of acquired military datasets. In general, 
the models were found to have a similar accuracy to a statistical method commonly used in 
performance and injury prediction. In addition, software was designed and implemented 
that incorporated the models as a demonstration of the feasibility of the project in helping 
improve fitness and reduce injuries through the identification of high risk individuals and 
regimen optimization.  

 The primary limitation to the current version of the models developed is the lack of 
accuracy. While the models in their current form have a comparable accuracy to that of 
traditional statistical methods, the models were unable to consistently be an improvement 
over the statistical method during validation. There are several reasons for this. First, the 
datasets (acquired post hoc from other research studies) often collected different measures, 
making it difficult to find two datasets that contain the same input and output measures. 
Second, most of the datasets lack sufficient training regimen details to allow the models to 
develop algorithms and parameter values that are capable of predicting injury and 
performance across different regimens (i.e., many of the datasets contained no marching 
distances). Third, some of the datasets only contained measures from those that passed 
BCT, making it difficult to assess model performance at predicting the negative outcomes of 
injury and performance.  

 Clearly one of the key factors in improving model predictive accuracy is to acquire 
additional data that has more detailed training regimen measures. This would allow the 
models to better account for current and new performance factors, improve the model algo-
rithms, and update the dosage calculations. In addition, an improved model from better 
regimen details should allow the model to extrapolate to different training regimens with-
out the loss in accuracy currently seen. 

 There are several future tasks we hope to incorporate into the next version of the TOP 
model and software that will improve the utility of this effort. This includes acquiring addi-
tional field data that contains predictor variables, outcome measures, and detailed training 
regimen descriptors. Also, laboratory data that profiles the biomechanical loading for the 
various exercises used in training would enable better models to be developed. For software 
development, future tasks include implementing additional user types and upgrading the 
graphical user interface of the existing software based on potential user’s feedback.  



4.1 Key Accomplishments 
 Modeling 

• Developed sit-up, push-up, and run performance models that predict final PFT 
outcomes 

• Developed stress fracture and overuse injury models that predict the likelihood of 
injury during training 

 Software 

• Implemented all performance and injury models (run, sit-up, push-up, stress frac-
ture, and overuse injury) 

• Developed and implemented a database schema to store subject information and 
training regimen details 

• Identified four potential user types (basic, mid-level, group-level, and researcher) 
and their needs 

• Created a fully functional web-based software package for two different user types 
(basic and mid-level), which incorporates all the performance and injury models 
currently developed.  

4.2 Reportable Outcomes 
 We have:  

• Demonstrated that a simplified dose-response method to account training regimen 
(and risk factors) is a feasible method of creating training prediction models 

• Demonstrated the models’ potential for similar or better accuracy than a tradi-
tional statistical prediction scheme by comparing the accuracy against different 
datasets 

• Shown that a software package can be created that incorporates prediction models 
to allow users to quickly assess the training status of an individual or small group 
of trainees. 
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Appendix A. Available Datasets 

 The project currently has eight different datasets containing subject information 
ranging from fitness test scores to injury and anthropometry measures. Some datasets also 
contain questionnaire responses on initial fitness level, hormone regulation and previous 
injuries. Unfortunately, only limited information on the training regimen that the recruits 
from these datasets participated in is known. Table 40 summarizes the information 
contained in each dataset. The IDF or Israeli Defense Force dataset was recently acquired 
and has not yet been assessed for it ability to contribute to this effort (Group H).  

 The primary dataset used for the development of the performance and injury models 
is Group G (Table 40), which is composed of 681 males and 336 females that underwent 
U.S. Army BCT circa 1997. As shown in Table 40, this dataset was chosen because it is the 
most complete of the eight datasets currently acquired, containing input measures such as 
anthropometry, questionnaire data, and 1st PFT results as well as performance and injury 
outcome records from BCT. Validation datasets included Group A and Group C, two U.S. 
Marine Corps datasets as well as Group F, another U.S. Army dataset, none of which were 
complete.  



 

Table 40. Summary table of the datasets available for model development. 

GROUP A B C D E F G H I 
Dataset Info          

Location & Year MCRD-PI 
1995 

MCRD-PI 
1999 

MCRD-SD 
1993 

MCRD-SD 
2003 

MCRD-SD 
2005 

Ft Jackson 
1998 

Ft S Ht Tx 
~1997 

IDF 
2006 

Ft. Jackson 
2002-04 

Source NHRC NHRC NHRC MCRD-SD MCRD-SD ARIEM BAMC IDF CHPPM 
Nsubjects 2963 821 1286 3782 572 350 1019 197 1902 

Fitness Testing                  
IST Data            

Mid-PFT Data                  
Other Fit Tests                

FPFT Data             
Injury Status                  

Stress Fracture             
Overuse Injuries              

Mishap/Acute Injuries              
Questionnaire                  

Init Fit Level             
H Regulation             
Prev Injuries             

Anthropometry                  
Gender F F M M M M M, F M, F  

Ht, Wt, Age           
Detailed Anthro              

Training Regimen                 
Ndays 83 83 82 85 85 63 63/70 112 --- 

Regimen BCT BCT BCT BCT BCT BCT BCT/AIT BCT --- 
Reg Details Good --- OK Poor --- --- Poor OK --- 
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Executive Summary 

This report describes three efforts related to preventing stress fractures in the military 
through the development of techniques intended for patient-specific analysis and modeling 
of subject tibias. 

 The first section of this report describes our effort to conduct a detailed analysis of 
pQCT images taken of the tibias of 59 volunteers from the University of Connecticut. The 
purpose of this study was to use pQCT to evaluate the subtle changes to bone morphology 
expected in a healthy adult female undergoing a rigorous short term exercise intervention. 
To this end, analysis software was written for the purpose in Matlab. The University of 
Connecticut cohort was chosen to be a similar age to military recruits, and the duration of 
the training intervention was intended to be typical of military indoctrination. A further 
goal was to identify trends between type of exercise and the tibial location where changes 
occurred. In order to make meaningful comparisons between images taken Pre training 
with those taken Mid or Post training, and across subjects, all image sets first underwent a 
rotation and registration procedure using software written for the purpose. Following rota-
tion and registration, the software was used to make detailed, regional analyses of the 
tibias. It was found that trabecular density (Tb.Dn) in the ultra-distal tibia was the first 
measure to reflect bone changes brought on by increased physical activity. This early trabe-
cular modeling is consistent with his faster remodeling rate compared to cortical bone, a 
fact owed to its greater surface area (Guo 2001). Further results suggest that impact-
producing aerobic exercises are the most effective at producing such changes. That aerobic 
exercise seems necessary to produce observable changes is not surprising giving the state of 
knowledge of bone cell mechanobiology.  

 The second section of this report describes a study in which a larger set of pQCT 
images was collected from recruits in the Israeli Defense Force. As with the University of 
Connecticut study, pQCT images were collected prior to basic combat training. Rather than 
conducting a “Pre-Post” type analysis, the image analysis software written for the Univer-
sity of Connecticut study was used to conduct a study of morphological differences between 
male and female recruits. This study determined that while women have higher cortical 
density than men, they have less bone area. Higher density bone tends to be more brittle, 
and thus more prone to stress fracture. Additionally, the tibias of females in this study had 
moments of inertia roughly half that of men, indicating similar loads may yield higher 
bending stresses in women than in men. 

 These two studies demonstrated that pQCT gives reliable and repeatable measure-
ments of bone mineralization and yields accurate geometric measurements. Further, it 
inherently takes into account some factors such as genetics, diet, and hormones. These 



 ES-2 

observations led to the third effort described in this report: using pQCT to generate Patient 
Specific Finite Element models of the tibia. The procedure involved taking measurements 
at three slice planes (4%, 38%, 66%) and then scaling a generic tibia to match these dimen-
sions. Next, the tibia model material properties are predicted per element based on the 
density values in the pQCT images. Applied loading conditions are also derived on a 
patient-specific basis from a inverse dynamics biomechanical model. The results of a pilot 
study using this procedure on a subset of the University of Connecticut cohort are 
presented. 
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1. Introduction 

Bone is a living tissue whose function and adaptation are mechanically mediated, and bone 
related diseases often have a mechanical pathogenesis. Effective diagnosis, intervention, 
and treatment of maladies such as stress fracture could greatly benefit from an under-
standing of the mechanical environment that results in vivo during normal and atypical 
physical activity. The mechanical stimulus is, however, both highly patient and location 
specific. The goal of the bone-related portion of the Overuse Injury Modeling project was to 
develop various computational methods, using principles from engineering, to perform 
patient-specific analysis of pQCT images and to then begin to assess the stress distribution 
in the tibia on a patient specific basis. 

 This report is divided into three sections. The first section (Chapter 2) describes 
research and analysis of data collected from a USARIEM sponsored study conducted with 
volunteers from the University of Connecticut. This chapter is substantially a reprint of a 
manuscript submitted to the Journal of Bone and Mineral Research which describes the 
study in detail. Summaries of the Matlab codes used to conduct the analysis are included in 
the Appendix as a supplement to this. 

 The second section (Chapter 3) describes a similarly structured study involving a 
cohort from the Israeli Defense Forces. This study, however, only analyzed baseline pQCT 
images collected from 91 recruits during induction to Basic Combat Training. The goal of 
this study was to quantify differences in bone morphology between men and women. 

 The third section (Chapter 4) describes our efforts to develop modeling software which 
can generate and analyze a fully three-dimensional model tibia given only a few pQCT 
scans of an individual. The model is then used as input to a finite element analysis which 
estimates in vivo stresses and strains in the bone given the subjects body weight. This 
process is referred to as Patient Specific Finite Element Analysis. 

 Since stress fracture occurrence is a highly patient-specific phenomenon, their preven-
tion will largely have to be patient-specific as well. The analysis and modeling techniques 
developed in the course of this research will contribute to diagnostic capabilities that will be 
practical enough for widespread military use. 
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2. Regional Bone Changes in the Tibia Resulting from 
Short Term Exercise Regimens  

2.1 Introduction 
 Controlled studies intending to show the beneficial effects of exercise intervention on 
bone strength in humans present two primary difficulties. First, a physical regimen must 
be of sufficient intensity and duration when compared with the normal baseline activities of 
a subject to produce a mechanical stimulus of sufficient magnitude and duration to result in 
adaptation. Secondly, a noninvasive diagnostic technique must be used which has adequate 
resolution to reliably observe what are likely to be in adults, subtle changes in bone 
morphology.  

 These observable “subtle changes” are of two types: changes in volumetric bone 
mineral density (vBMD) and changes in geometric or architectural changes such as cortical 
thickness (Ct.Th), cortical area (Ct.Ar), or cross-sectional moment of inertia (I or J). Most 
of these changes are expected to be local, both in terms of longitudinal location (e.g., 
epiphyseal vs diaphyseal) and in terms of cross-sectional region (e.g., anterior vs posterior) 
with different regimens leading to differing localized effects. 

 Exercise intervention studies have not, however, been primarily concerned with 
quantifying localized effects, instead demonstrating, among various cohorts, the osteogenic 
effect of exercise and physical activity (Chilibeck et al. 1995; Schoutens et al. 1989). In a 
1999 review of the literature on the effect of exercise interventions on bone loss in pre- and 
post-menopausal women (most of which relied on DXA measurements). Wolff et al. (1999) 
found that exercise training programs reversed or prevented bone loss in the femoral neck 
and lumbar spine. Vainionpaa et al. (2007) used QCT to measure the bone geometry in 65 
adult women before and after an exercise intervention, finding that impact-exercises 
resulted in a significantly higher femoral circumference at mid diaphysis. Additionally, a 
number of animal studies have demonstrated the importance of dynamic bone loading for 
instigating an osteogenic response (Judex and Zernicke 2000; Mosley and Lanyon 1998; 
Robling et al. 2002; Rubin and Lanyon 1984; Umemura et al. 1997). While two dimensional 
imaging techniques such as DXA may show long term bone adaptations, it lacks the resolu-
tion to detect the subtle changes occurring in the short term (3 months or less). 

 Peripheral Quantitative Computed Tomography (pQCT) has been validated and used 
extensively to make assessments of whole cross-sectional properties (Sievanen et al. 1998;  
Fujita 2002). Geometric indices based on such measurements are useful as they have been 
shown to correlate with fracture risk (Tommasini et al. 2005). pQCT has also recently been 
used to measure bone quality changes resulting from exercise intervention among children 
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(Heinonen et al. 2000; Johannsen et al. 2003; Macdonald et al. 2007; Specker and Binkley 
2003). These results confirm similar findings from DXA studies of habitual physical activity 
(Rautava et al. 2007; Tobias et al. 2007). 

 pQCT also presents the opportunity for more refined, regional analysis of changes to 
bone morphology in the long bones of the lower extremities. This is particularly true if the 
images acquired by pQCT are exported and analyzed a posteriori with specialized software. 
Some recent research has employed pQCT to conduct a regional analysis of bone cross-
sections. pQCT has been used to examine regional variations in the cortical bone of animals 
(Nonaka et al. 2006) and humans (Lai et al. 2005a) and trabecular bone in humans (Lai et 
al. 2005b). The study by Lai et al. (2005a) of postmenopausal women found that the poste-
rior cortex had a significantly higher cortical density than the anterior cortex, suggesting 
that the posterior cortex may be adapted for compressive loading and the anterior cortex is 
adapted to the tensile loading which are predominant loading modes during gait. Lai et al. 
(2005b) used pQCT and microCT to compare trabecular BMD in four quadrants of the 
ultradistal tibia. They found that both pQCT and microCT showed significantly lower 
trabecular BMD in the anterior than in the posterior region. In an exercise and hormone 
replacement therapy intervention study of postmenopausal women, Cheng et al. (2002) 
used QCT with the program Bonalyse 1.3 to calculate the polar distribution of mass in the 
diaphysis of the tibia and femur. They found that HRT and high-impact exercise resulted in 
a significant positive increase in bone mass in the proximal tibia, primarily in the antero-
posterior direction. Ruffing et al. (2006) used pQCT to perform a statistical analysis 
correlating lifestyle factors with bone mass and size for a large cohort of military cadets. 

 The usefulness of pQCT to detect early, regional changes in bone from an exercise 
intervention is not well studied. The purpose of this study was to use pQCT to evaluate the 
subtle changes to bone morphology expected in a healthy adult female undergoing a rigor-
ous short term exercise intervention. The cohort was chosen to be a similar age to military 
recruits, and the duration of the intervention was intended to be typical of military indoc-
trination. A further goal was to identify trends between type of exercise and the tibial loca-
tion where changes occurred. 

2.2 Materials and Methods 

2.2.1 Subjects 
 Seventy-one subjects initially signed up for the study and 14 dropped after pre-
testing. The remaining 57 were divided into four exercise regimen groups: Control, Aerobic, 
Resistance, Combined (Aerobic and Resistance). Their mean age, height, and weight are 
given in Table 1. 
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Table 1. Subject Prestudy Characteristics. 

 n Age (yr) Height (in) Weight (kg) 

Control 10 19.7 ± 1.42 65.10 ± 2.77 65.98 ± 8.19 
Aerobic 14 21.07 ± 1.90 65.14 ± 2.38 64.99 ± 6.78 

Resistance 18 20.44 ± 2.12 65.00 ± 3.20 65.15 ± 8.14 
Combined 17 20.06 ± 1.56 64.82 ± 2.81 65.55 ± 12.12 

 

2.2.2 Exercise Regimens 
 Subjects in the Aerobic training group performed aerobic or running based exercises 
on three alternating days a week. On nontesting weeks, Mondays were used for 20-30 
minute running at 70 to 85% of maximum heart rate. On Wednesdays, subjects conducted 
interval runs, totaling about 2 miles, comprised of 400m, 800m, 1200m, or 1600m segments 
at near maximum heart rate (see Table 2). On nontesting Fridays, subjects performed 30 
minutes of running or similar aerobic exercise at 80-85% maximum heart rate. All sessions 
included 5-10 minute warm-up and warm-down periods. Heart rates were monitored using 
Polar heart rate monitors (Polar Electro Oy, Finland, model #S610). 

 Subjects in the Resistance exercise training group performed nonlinear, periodized 
resistance training in which the load and repetition varied on a weekly basis (see Table 3). 
The exercises and load ranges performed were selected specifically to impact lower body 
bone remodeling (See Table 4). “Light” days involved 12 RM loads, “Moderate” days 
involved 8-10RM loads, and “heavy” days involved 6-7 RM loads. 

 Subjects in the Combined exercise training group performed both the aerobic and the 
resistance exercise training regimens on the same day and during the same session. The 
resistance regimen was performed prior to the aerobic regimen. 

2.2.3 pQCT Collection 
 Images were collected using a Norland-Stratek XCT-3000. The left tibia was imaged 
in 55 subjects, the right in the remaining two. Before each image, a scout scan was 
conducted to determine the location of the endplate of the distal tibia. A reference line was 
placed at this location and the overall tibial length for each subject was entered. Prior to 
data collection, a hydroxyapatite standard phantom was used to ensure measured values 
were within manufacturers limits. Images were collected at slice levels of 4%, 38% and 66% 
of tibial length. A slice depth of 2.2 mm was used at a voxel resolution of 0.4 mm/voxel.  
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Table 2. Aerobic Group Exercise Regimen 

  Week 
2 

Week 
3 

Week 
4 

Week 
5 

Week 
6 

Week 
7 

Week 
8 

Week 
9 

Week 
10 

Week
11 

Week 
12 

Week 
13 

M Testing Testing 20-30 
Min 
@ 75% 

30 Min 
@ 75% 

30 Min 
@ 75% 

30 Min 
@ 75% 

30 Min 
@ 75% 

30 Min 
@ 75% 

30 Min 
@ 75% 

30 Min 
@ 75% 

30 
Min 
@ 75% 

Testing Testing 

W Testing Testing 20-30 
Min 
@ 75% 

30 Min 
@ 75% 

1 Mile 1.5 Mile 2 Mile 2 Mile 2 Mile 2 Mile 3 Mile Testing Testing 

F Testing 2 Mi 20-30 
Min 
@ 75% 

30 Min 
@ 80-
85% 

30 Min 
@ 80-
85% 

30 Min 
@ 80-
85% 

30 Min 
@ 80-
85% 

30 Min 
@ 80-
85% 

30 Min 
@ 80-
85% 

30 Min 
@ 80-
85% 

2 Mile Testing Testing 

 
 

Table 3. Resistance Group Exercise Regimen 

 Week 
1 

Week 
2 

Week 
3 

Week 
4 

Week 
5 

Week 
6 

Week 
7 

Week 
8 

Week 
9 

Week 
10 

Week 
11 

Week 
12 

Week 
13 

M Testing Testing Light Moderate Heavy Moderate Testing Heavy Moderate Light Heavy Testing Testing 

W Testing Testing Moderate Light Moderate Heavy Testing Light Heavy Heavy Moderate Testing Testing 

F Testing Testing Heavy Moderate Light Moderate Moderate Heavy Moderate Moderate Light Testing Testing 
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Table 4. Specific Exercise Regimen- Resistance Group 

Monday Wednesday Friday 
Squat Leg Press* Squat 
Stiff Leg Deadlift Stiff Leg Deadlift Stiff Leg Deadlift 
Bench Incline Bench Bench 
Pulldown Seated Row Pulldown 
Upright Row Shoulder Press Upright Row 
Calf Exercises Calf Exercises Calf Exercises 
Abdominal Work Abdominal Work Abdominal Work 

 
 Images were collected, at each slice level, during pre-training testing (“Pre” images), 
at week 7 (“Mid” training) and at week 13 (“Post” training). Thus there were nine images 
(4%, 38%, and 66% at Pre, Mid, and Post training) comprising each subject “image set”. 

2.2.4 Data Analysis 
 At the conclusion of the 13 week study, all image sets were analyzed using Matlab 
codes written for the purpose by the authors. 

 In order to make meaningful comparisons between images taken Pre training with 
those taken Mid or Post training, and across subjects, all image sets first underwent a rota-
tion and registration procedure.  

 For each subject, the 4% slice was centered on the tibial perimeter, but the 38% and 
66% slices were centered on the intramedullary canal so that the canal radius and cortical 
wall thickness could be accurately calculated in each sector. The crest of the tibia at 66% 
was then assumed to point in the anterior direction, and the 38% and 4% slices were 
rotated accordingly by the same angle as at 66%. The images of two subjects which were 
collected from their right legs were inverted so that they could be compared with the left 
tibias of the other subjects. Alignment was checked for each subject by overlaying plots of 
the periosteal boundaries for each subject and minimizing the difference in boundaries. 

 Six 60° polar sectors were defined for analysis: Lateral Anterior, Anterior, Medial 
Anterior, Medial Posterior, Posterior, and Lateral Posterior (see Figure 1). 

 The tibia was isolated in each image and each voxel within the tibia was classified 
based on its vBMD value as being either trabecular (100-600 mg/cm3), transitional (600-800 
mg/cm3), or cortical (800-1500mg/cm3). Histograms for each image indicated there were 
relatively few pixels in the transitional regime which is in keeping with the known separa-
tion between cortical and trabecular BMD values. For this reason, voxels in the transitional 
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regime were assumed to be largely partial-volume artifacts, and not included in the final 
analysis. 

 
Figure 1. Analysis Sector definitions. 

Shown is a 4% slice (left) and a 66% slice. The crest of the tibia at 66% was rotated 
to point in the anterior direction for each subject. This is the left tibia, looking 

proximally. 
 

 Because a variety of methods for calculating geometric and density parameters from 
pQCT have been reported in the literature, and because this analysis was not based on 
parameters calculated from the native, proprietary pQCT software such as BonAlyse, we 
present a detailed description of how each quantity was calculated. 

 For each tibia image, the following calculations were made: 

• AP, ML (Anterior-Posterior and Medial-Lateral width: 4%, 38%, and 66%): Calculated 
from the coordinates of the voxels at the greatest directional extent. 

• IAP, IML, J (Cross sectional moments of inertia: 38% and 66%): Moments of inertia 
calculated about the anterior-posterior and medial-lateral axes respectively. The polar 
moment of inertia J = IAP + IML. Moments of inertia were calculated using only those 
voxels in the cortical threshold range. 

• Ct.Ar (Cortical area, for 38% and 66% only): The areal sum of the voxels in the corti-
cal range. This was calculated for each polar sector (e.g., Ct.ArLat-Ant) and for the whole 
tibial cross section (Ct.ArTot). 

• Tb.Ar (Trabecular area, for 4% only): The areal sum of the voxels in the trabecular 
range. Though calculated at 38% and 66%, there were too few voxels in this range for 
a meaningful analysis. 
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• Ct.Dn (Cortical density, for 38% and 66% only): The average of all voxels falling 
within the cortical thresholds. These were calculated for each polar sector and for the 
whole tibial cross section. 

• Tb.Dn (Trabecular density, for 4% only): The average of all voxels falling within the 
trabecular thresholds. These were calculated for each polar sector and for the whole 
tibial cross section. 

• BMC (Bone Mineral Content): Calculated by multiplying, for a given sector or region 
of interest, the Ct.Dn or Tb.Dn by Ct.Ar or Tb.Ar, respectively and then by the slice 
thickness (2.2 mm). 

• BSI (Bone Strength Index, for 38% and 66% only): A measure of bending stiffness, 
BSI = (Ct.DnTot )( I). 

• SIAP, SIML (Slenderness Index, 38% and 66% only): The ratio of the AP and ML 
section modulus to the product of tibial length, L and body weight, BW (Selker and 
Carter 1989; Tommasini et al. 2005). So for example, the SI about the anterior-poste-
rior axis would be, 

 

( )( )

1

/ 2

APSI
J

AP
L BW

=
⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤⎣ ⎦

  (0.1) 

• Ct.Th (Cortical thickness, 38% and 66% only): The average radial distance between 
the periosteal boundary and the endosteal boundary, calculated in 10° sector incre-
ments but averaged over 60° polar sectors.  

• Ca.|Rd| (Normalized canal radius, 38% and 66%): The radial distance to the 
endosteal boundary divided by the radial distance to the periosteal boundary. Calcu-
lated in 10° sector increments but averaged over 60° polar sectors.  

2.2.5 Statistical Methods 
 Trabecular remodeling was assessed solely using the 4% site, which contains but a 
thin cortical shell.. The number of trabecular voxels at the 38% and 66% were, in most 
cases, between 5-10% of the number at the 4% site. 

 The 38% and 66% sites were both used to assess changes in cortical bone. 
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2.3 Results  

2.3.1 Density measures 
 Significant increases in Tb.Dn were observed in the medial sectors at the 4% site 
(Table 5 and Figure 2). Significant changes in Ct.Dn were not seen at either the 38% (Table 
8) or 66% (Table 11) sites. 

2.3.2 Areal Measures 
 A significant increase in Tb.Ar was only observed in the Lateral-Anterior sector of the 
Aerobic group (Table 6). No significant change was seen Ct.Ar at 38% (Table 9) or 66% 
(Table 12). 

 At the diaphyseal locations, Ct.Ar is closely related to the cortical thickness Ct.Th 
(shown in Figure 4 for 66%) and normalized medullary canal radius Ca.|Rd| (shown in 
Figure 5 for 66%) since these quantities are all a function of the number of voxels in the 
cortical threshold range. The Anterior sector of the Control group at 66% underwent a 
significant -3.75% (p = .00006) change in cortical thickness with a concomitant (though 
insignificant) -1.36% change in Ct.Ar. and .96% increase in Ct.Dn. Since the normalized 
canal radius Ca.|Rd| remained essentially unchanged, this suggests the decrease in corti-
cal thickness was due primarily to endosteal resorption. 

2.3.3 BMC Measures 
 The aerobic group had significant increases in BMC in the medial-anterior and 
lateral-anterior sectors at 4%, while the resistance group had modest, but not statistically 
significant increases in the Medial sectors (Table 7 and Figure 3). 

2.3.4 Strength Indices 
 There were no significant changes found in IML, IAP, J, BSI, or SI. 

 For the sectors at the 4% site that experienced a significant change in Tb.Dn, a 
regression analysis was conducted to see if the amount of change correlated with anthro-
pometric or geometric parameters: 

1. SIAVG (SIAP-38%, SIML-38%, SIAP-66%, SIML-66%)  

2. SIML (SIML-38%, SIML-66%)  

3. SIAP (SIAP-38%, SIML-38%) 

4. IML (IML-38%, IAP-66%) 

5. IAP (IAP-38%, IAP-66%) 

6. J (J-38%, J-66%) 
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7. ML (ML-38%, ML-66%) 

8. AP (AP-38%, AP-66%) 

9. BW  

 In each case, parameters were averaged among the quantities in parentheses and 
among pre, mid, and post values. None of the regions with significant changes in Tb.Dn 
correlated with any of these anthropometric/geometric parameters. 
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Table 5. Regional trabecular density (mean, SD), mean changes, and p-value (LSD) where significant, 4%. 

 Control Aerobic Resistance Combined 
 
 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 
4% Tb.Dn 288.22    288.22    288.22    288.22    

Lat-Ant 290.2 
15.9 

289.2 
15.7 

289.2 
14.0 

-0.31 281.6 
48.1 

282.3 
48.0 

283.4 
45.8 

0.88 296.6 
39.9 

296.7 
38.4 

295.5 
39.1 

-0.33 284.6 
31.2 

285.6 
28.9 

284.8 
29.7 

0.13 

Ant 278.1 
16.3 

276.1 
17.1 

278.0 
17.0 

-0.04 267.5 
48.2 

267.0 
47.6 

270.7 
48.9 

1.21 279.5 
37.9 

280.5 
37.2 

280.7 
37.4 

0.48 269.5 
27.8 

270.9 
27.1 

270.9 
27.5 

0.53 

Med-Ant 272.0 
22.0 

271.1 
18.7 

269.4 
18.3 

-0.87 255.6 
37.1 

259.0 
36.5 

260.0 
37.5 

1.75 
(p=.003) 

264.9 
37.6 

265.4 
40.1 

265.1 
37.7 

0.10 258.6 
22.4 

261.1 
21.0 

260.9 
19.6 

1.00 

Med-Post 297.0 
25.3 

297.3 
28.8 

297.6 
27.1 

0.17 279.2 
30.5 

285.8 
31.6 

288.0 
31.8 

3.16 
(p=.000) 

290.7 
45.1 

295.4 
45.7 

295.4 
44.7 

1.68 
(p=.007) 

282.9 
33.0 

287.8 
32.8 

288.7 
31.0 

2.18 
(p=.00068) 

Post 299.9 
25.0 

299.3 
25.0 

299.7 
27.6 

-0.09 280.0 
40.7 

282.3 
41.0 

282.1 
41.0 

0.75 302.9 
46.2 

301.3 
44.2 

302.1 
46.1 

-0.24 291.6 
32.4 

294.3 
29.7 

293.8 
30.5 

0.89 

Lat-Post 301.9 
33.1 

304.1 
31.9 

304.6 
31.2 

0.98 286.5 
51.5 

290.2 
51.9 

287.9 
49.4 

0.66 312.4 
52.3 

314.1 
52.1 

311.9 
52.7 

-0.13 297.2 
63.1 

300.9 
33.6 

299.2 
34.6 

0.77 

All 289.9 
13.4 

289.5 
13.3 

289.7 
13.6 

-0.03 275.1 
39.6 

277.8 
39.7 

278.7 
38.8 

1.40 
(p=.0004) 

291.2 
39.8 

292.2 
39.8 

291.8 
39.4 

0.26 280.7 
26.3 

283.4 
24.8 

283.0 
24.5 

0.92 
(p=.0095) 

Table 6. Regional trabecular area (mean, SD), mean changes, and p-value (LSD) where significant, 4%. 

 Control Aerobic Resistance Combined 
 
 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 
4% Tb.Ar 288.22    288.22    288.22    288.22    

Lat-Ant 167.0 
19.2 

165.6 
18.3 

163.2 
20.5 

-2.28 160.9 
18.7 

161.2 
16.2 

166.4 
16.4 

3.68 
(p=.0022) 

157.3 
29.6 

161.9 
33.7 

159.9 
31.7 

1.48 158.4 
18.6 

158.1 
19.2 

158.7 
21.0 

0.03 

Ant 141.0 
18.1 

143.0 
20.1 

138.9 
18.3 

-1.46 132.4 
16.0 

135.8 
14.8 

135.2 
17.5 

2.21 124.4 
24.0 

130.8 
27.7 

127.6 
26.5 

2.46 133.9 
29.2 

132.3 
25.7 

134.1 
28.5 

0.40 

Med-Ant 206.5 
21.0 

204.5 
20.9 

203.9 
18.4 

-1.14 193.4 
28.8 

193.3 
28.5 

195.0 
27.9 

0.98 186.1 
28.7 

191.0 
34.1 

188.2 
33.2 

0.88 187.8 
21.9 

184.1 
20.2 

185.8 
24.0 

-1.13 

Med-Post 189.2 
15.1 

187.9 
13.9 

187.8 
14.6 

-0.66 177.6 
20.5 

175.0 
23.1 

178.0 
23.9 

0.12 184.9 
27.2 

185.4 
29.9 

183.9 
30.2 

-0.72 176.3 
14.8 

174.3 
14.9 

174.9 
13.9 

-0.73 

Post 155.2 
21.7 

156.3 
22.0 

154.2 
22.5 

-0.68 144.4 
19.1 

141.5 
17.4 

142.3 
17.7 

-1.26 142.3 
21.7 

141.3 
22.6 

140.9 
22.1 

-0.93 139.4 
16.6 

138.4 
16.5 

140.0 
19.1 

0.32 

Lat-Post 129.7 
20.7 

130.9 
17.9 

127.6 
20.9 

-1.54 134.8 
28.5 

133.6 
28.7 

135.6 
26.2 

1.06 128.8 
21.3 

128.0 
21.1 

127.2 
22.2 

-1.27 126.4 
15.8 

128.2 
16.9 

130.2 
23.0 

2.74 

All 164.8 
15.8 

164.7 
15.7 

162.6 
16.2 

-1.29 157.2 
15.8 

156.7 
16.1 

158.8 
15.3 

1.13 153.9 
22.3 

156.4 
24.8 

154.6 
24.3 

0.32 153.7 
16.6 

152.6 
15.5 

154.0 
18.1 

0.27 
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Table 7. Regional bone mineral content (mean, SD), mean changes, and p-value (LSD) where significant, 4%. 

 Control Aerobic Resistance Combined 
 
 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 
4% BMC 288.22    288.22    288.22    288.22    

Lat-Ant 106.7 
14.7 

105.4 
13.0 

103.8 
13.5 

-2.57 99.1 
17.9 

99.6 
16.6 

103.2 
16.0 

4.63 
(p=.0026) 

102.5 
22.9 

105.7 
26.4 

104.1 
25.4 

1.13 98.8 
13.1 

99.0 
13.5 

99.1 
14.7 

0.15 

Ant 86.3 
12.6 

86.8 
13.0 

85.0 
12.5 

-1.46 77.5 
14.1 

79.6 
15.7 

80.0 
14.1 

3.39 
 

76.4 
17.4 

80.8 
20.9 

78.9 
19.7 

2.96 79.0 
17.2 

78.5 
15.3 

79.5 
16.4 

0.94 

Med-Ant 122.9 
7.9 

121.5 
9.9 

120.4 
8.3 

-2.02 108.9 
23.5 

110.4 
24.2 

111.6 
22.8 

2.75 
(p=.0381) 

109.3 
25.7 

112.4 
30.1 

110.6 
28.0 

0.96 106.8 
15.6 

105.8 
14.6 

106.7 
16.3 

-0.15 

Med-Post 123.5 
13.6 

122.7 
13.2 

122.8 
12.8 

-0.50 108.7 
13.9 

109.7 
16.2 

112.5 
16.9 

3.28 117.3 
19.1 

119.5 
20.8 

118.5 
20.2 

0.92 109.9 
17.4 

110.5 
17.3 

111.3 
16.5 

1.42 

Post 102.4 
16.7 

102.8 
16.3 

101.6 
17.2 

-0.81 89.1 
18.3 

87.8 
15.6 

88.0 
14.9 

-0.51 94.4 
18.1 

93.2 
18.1 

93.4 
19.3 

-1.18 89.3 
13.4 

89.4 
12.7 

90.3 
14.2 

1.17 

Lat-Post 86.6 
19.2 

87.9 
16.6 

85.7 
17.2 

-0.56 84.6 
20.7 

84.6 
20.1 

85.4 
18.2 

1.72 88.2 
18.3 

88.2 
18.6 

87.1 
19.1 

-1.35 82.4 
12.4 

84.7 
13.1 

85.4 
15.8 

3.55 

All 104.7 
10.6 

104.5 
10.2 

103.2 
10.3 

-1.32 94.6 
14.1 

95.3 
14.2 

96.8 
13.1 

2.54 
(p=.0069) 

98.0 
17.8 

100.0 
20.2 

98.8 
19.3 

0.57 94.4 
11.9 

94.7 
11.2 

95.4 
12.1 

1.18 

Table 8. Regional cortical density (mean, SD) and mean changes, 38%.  

 Control Aerobic Resistance Combined 
 Pre Mid Post Avg.Pre- 

 Post  
%Change

Pre Mid Post Avg.Pre- 
 Post  

%Change

Pre Mid Post Avg.Pre- 
 Post  

%Change

Pre Mid Post Avg.Pre- 
 Post  

%Change 
38% 
Ct.Dn 

                

Lat-Ant 1197.8 
17.1 

1192.1 
20.6 

1195.8 
17.5 

-0.16 1210.5 
22.2 

1212.2 
23.2 

1211.1 
23.5 

0.06 1204.7 
22.3 

1205.3 
25.7 

1203.9 
18.7 

-0.05 1200.1 
16.9 

1201.5 
16.3 

1197.2 
14.7 

-0.23 

Ant 1166.0 
28.5 

1165.4 
29.5 

1167.8 
31.9 

0.15 1177.4 
32.2 

1169.3 
36.0 

1174.4 
31.7 

-0.24 1179.3 
27.0 

1173.7 
29.8 

1181.2 
22.9 

0.17 1170.5 
19.6 

1166.7 
21.0 

1167.9 
22.6 

-0.22 

Med-Ant 1209.9 
26.0 

1211.8 
25.1 

1210.3 
23.9 

0.04 1222.0 
20.7 

1227.0 
21.7 

1221.5 
25.7 

-0.03 1215.3 
19.3 

1219.3 
27.6 

1216.8 
21.3 

0.13 1217.4 
20.3 

1211.1 
21.0 

1216.6 
19.5 

-0.06 

Med-Post 1224.1 
24.2 

1220.0 
28.1 

1222.6 
27.0 

-0.12 1228.6 
17.0 

1225.1 
24.3 

1224.8 
20.6 

-0.31 1224.5 
19.5 

1221.8 
24.0 

1221.5 
25.5 

-0.25 1225.2 
17.6 

1223.4 
19.2 

1218.8 
16.7 

-0.52 

Post 1208.4 
23.8 

1204.1 
23.5 

1205.8 
21.8 

-0.21 1214.4 
18.8 

1213.9 
14.7 

1217.6 
22.3 

0.27 1209.6 
20.3 

1206.8 
22.5 

1206.9 
22.7 

-0.22 1211.5 
20.3 

1209.4 
19.0 

1211.1 
21.8 

-0.02 

Lat-Post 1234.5 
15.7 

1232.9 
19.5 

1235.9 
15.1 

0.12 1246.0 
18.5 

1234.7 
30.4 

1239.3 
20.8 

-0.53 1241.8 
24.0 

1234.9 
30.5 

1238.1 
21.2 

-0.28 1235.2 
20.3 

1231.4 
13.7 

1235.7 
15.9 

0.05 

All 1206.8 
18.1 

1204.4 
18.4 

1206.4 
16.7 

-0.03 1216.5 
13.3 

1213.7 
14.7 

1214.8 
17.3 

-0.13 1212.5 
17.6 

1210.3 
18.0 

1211.4 
16.8 

-0.08 1210.0 
12.6 

1207.3 
12.3 

1207.9 
12.1 

-0.17 
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Table 9. Regional cortical area (mean and SD) and mean changes, 38%.  

 Control Aerobic Resistance Combined 
 Pre Mid Post Avg.Pre- 

 Post  
% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 
38% Ct.Ar                 

Lat-Ant 29.1 
6.0 

29.2 
5.9 

29.1 
5.8 

0.36 27.5 
3.6 

27.6 
3.7 

26.7 
3.8 

-2.94 28.0 
5.1 

29.0 
6.1 

29.1 
5.9 

3.82 27.7 
5.6 

27.0 
3.5 

26.8 
3.0 

-1.75 

Ant 65.3 
8.2 

66.3 
8.8 

66.2 
8.0 

1.37 58.4 
7.8 

59.5 
7.8 

59.7 
7.2 

2.36 62.0 
11.7 

62.3 
10.2 

61.8 
10.3 

0.24 61.9 
9.1 

62.6 
8.7 

62.6 
9.9 

0.93 

Med-Ant 26.1 
4.7 

26.4 
4.7 

26.6 
5.0 

2.10 28.1 
7.0 

28.8 
7.1 

30.2 
7.1 

8.16 25.9 
6.6 

26.6 
6.6 

26.4 
6.4 

2.30 24.6 
3.7 

25.5 
4.1 

25.6 
4.7 

3.81 

Med-Post 42.6 
4.7 

42.3 
4.6 

42.6 
4.6 

0.14 39.8 
9.5 

39.7 
9.4 

40.7 
9.8 

2.36 41.2 
8.9 

41.8 
8.5 

41.6 
8.8 

0.98 37.9 
8.3 

37.7 
7.9 

38.0 
7.9 

0.45 

Post 42.2 
6.4 

43.7 
6.6 

42.4 
6.8 

0.45 39.1 
8.7 

39.7 
9.4 

38.8 
10.0 

-1.23 42.6 
7.6 

42.3 
7.0 

41.5 
7.0 

-2.41 40.5 
7.2 

40.5 
7.5 

40.2 
7.5 

-0.80 

Lat-Post 34.8 
7.3 

35.2 
7.5 

35.1 
7.1 

0.91 35.0 
7.8 

34.6 
7.1 

33.8 
8.0 

-3.60 33.6 
7.0 

33.4 
6.7 

33.8 
7.6 

0.42 35.3 
6.5 

35.2 
5.3 

35.0 
5.5 

-0.25 

All 40.0 
4.3 

40.5 
4.3 

40.3 
4.1 

0.89 38.0 
4.3 

38.3 
4.2 

38.3 
4.3 

0.85 38.9 
6.3 

39.2 
6.1 

39.0 
6.0 

0.89 38.0 
4.3 

38.1 
3.2 

38.0 
3.6 

0.40 

Table 10. Regional bone mineral content (mean, SD) and mean changes, 38%.  

 Control Aerobic Resistance Combined 
 Pre Mid Post Avg.Pre- 

 Post  
% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 
38% BMC                 

Lat-Ant 76.8 
16.2 

76.6 
15.6 

76.7 
15.6 

0.20 73.3 
9.4 

73.6 
9.8 

71.1 
10.3 

-2.99 74.2 
13.4 

76.8 
15.6 

77.0 
15.5 

3.79 73.1 
14.6 

71.2 
9.1 

70.5 
8.0 

-1.99 

Ant 167.6 
20.8 

169.8 
21.9 

169.8 
19.6 

1.51 151.2 
19.3 

152.9 
20.3 

154.1 
17.9 

2.12 160.4 
28.4 

160.6 
25.6 

160.5 
25.5 

0.39 159.4 
23.2 

160.4 
20.6 

160.6 
24.5 

0.67 

Med-Ant 69.5 
13.3 

70.4 
13.0 

70.9 
14.3 

2.14 75.5 
18.1 

77.5 
18.6 

81.1 
19.0 

8.14 69.3 
17.2 

71.1 
17.2 

70.6 
16.5 

2.44 65.7 
9.5 

67.8 
10.5 

68.4 
12.1 

3.76 

Med-Post 114.7 
13.5 

113.7 
13.3 

114.7 
13.2 

0.01 107.6 
25.5 

106.9 
25.5 

109.7 
26.1 

2.05 110.9 
23.2 

112.3 
22.5 

111.4 
22.4 

0.72 102.0 
21.3 

101.3 
20.5 

101.7 
20.6 

-0.05 

Post 112.1 
15.5 

115.5 
15.5 

112.3 
16.5 

0.25 104.2 
22.2 

105.8 
23.9 

103.7 
25.1 

-1.00 113.2 
19.4 

112.2 
18.2 

110.0 
17.7 

-2.63 107.9 
18.7 

107.6 
19.9 

107.1 
19.8 

-0.87 

Lat-Post 94.5 
19.6 

95.5 
20.0 

95.3 
18.9 

1.03 95.8 
20.4 

93.7 
18.7 

91.8 
20.5 

-4.10 91.5 
18.1 

90.4 
17.2 

91.8 
19.7 

0.15 95.8 
17.5 

95.2 
13.7 

95.0 
14.2 

-0.18 

All 105.9 
11.6 

106.9 
11.4 

106.6 
11.1 

0.86 101.3 
11.0 

101.8 
11.0 

101.9 
10.7 

0.70 103.2 
15.8 

103.9 
15.4 

103.5 
15.2 

0.81 100.7 
11.3 

100.6 
7.9 

100.5 
9.3 

0.22 
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Table 11. Regional cortical density (mean, SD) and mean changes, 66%. 

 Control Aerobic Resistance Combined 
 Pre Mid Post Avg.Pre- 

 Post  
% 
Change 

Pre Mid Post Avg.Pre- 
 Post  

% 
Change 

Pre Mid Post Avg.Pre- 
 Post  

% 
Change 

Pre Mid Post Avg.Pre- 
 Post  

% 
Change 

66% 
Ct.Dn 

                

Lat-Ant 1147.9 
18.2 

1144.6 
30.1 

1148.3 
13.6 

0.05 1150.4 
29.7 

1156.0 
22.3 

1147.0 
25.2 

-0.24 1151.8 
17.2 

1155.3 
24.1 

1145.7 
24.2 

-0.52 1151.3 
15.4 

1147.8 
19.3 

1146.0 
24.6 

-0.45 

Ant 1130.7 
38.8 

1130.7 
31.0 

1141.1 
25.6 

0.96 1147.2 
29.4 

1142.6 
44.0 

1150.4 
34.8 

0.28 1149.1 
26.2 

1148.5 
24.0 

1148.7 
28.7 

-0.02 1140.1 
22.2 

1139.8 
18.5 

1138.0 
19.0 

-0.17 

Med-Ant 1190.0 
33.5 

1185.8 
22.2 

1179.9 
20.5 

-0.81 1201.1 
34.0 

1185.2 
31.3 

1190.0 
22.8 

-0.88 1193.7 
20.5 

1184.1 
22.2 

1186.0 
19.2 

-0.63 1194.7 
19.4 

1191.1 
18.7 

1188.3 
18.0 

-0.53 

Med-Post 1208.4 
19.8 

1197.0 
21.5 

1201.1 
16.3 

-0.59 1213.6 
16.2 

1201.4 
49.6 

1209.5 
38.2 

-0.34 1214.4 
17.5 

1212.0 
20.3 

1212.7 
25.6 

-0.14 1208.9 
23.7 

1211.5 
20.4 

1212.9 
16.3 

0.36 

Post 1197.5 
19.7 

1192.6 
19.7 

1190.2 
16.6 

-0.61 1190.5 
23.5 

1189.7 
22.9 

1187.2 
23.4 

-0.26 1194.6 
18.1 

1193.0 
19.0 

1188.5 
17.1 

-0.51 1196.9 
16.6 

1192.7 
18.0 

1193.3 
18.0 

-0.31 

Lat-Post 1184.4 
34.2 

1175.4 
49.2 

1198.5 
17.3 

1.24 1192.4 
25.7 

1194.5 
39.0 

1204.3 
15.6 

1.04 1196.8 
26.3 

1197.0 
31.9 

1200.3 
22.1 

0.32 1190.7 
15.6 

1199.8 
16.7 

1196.6 
14.5 

0.51 

All 1176.5 
15.8 

1171.0 
17.8 

1176.5 
11.9 

0.04 1182.5 
15.5 

1178.3 
27.5 

1181.4 
20.1 

-0.07 1183.4 
16.0 

1181.6 
16.4 

1180.3 
14.9 

-0.25 1180.4 
16.6 

1180.5 
9.2 

1179.2 
9.8 

-0.10 
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Table 12. Regional cortical area (mean, SD) and mean changes, 66%. 

 Control Aerobic Resistance Combined 
 Pre Mid Post Avg.Pre- 

 Post  
% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 
66% Ct.Ar                 

Lat-Ant 23.9 
6.3 

22.8 
5.8 

23.7 
5.3 

0.24 22.0 
3.6 

22.6 
4.1 

22.4 
3.9 

1.63 24.4 
5.2 

24.4 
5.8 

24.3 
5.6 

-0.28 22.5 
3.5 

22.3 
4.4 

22.0 
4.2 

-2.25 

Ant 79.1 
7.1 

78.3 
7.5 

78.1 
7.5 

-1.36 72.6 
9.4 

71.8 
10.0 

72.3 
9.6 

-0.38 74.9 
15.3 

75.3 
14.4 

75.2 
15.0 

0.38 74.6 
10.5 

74.9 
10.7 

75.2 
10.7 

0.79 

Med-Ant 27.8 
5.0 

27.3 
5.2 

27.7 
5.5 

-0.72 27.2 
6.7 

26.9 
6.8 

27.5 
6.7 

1.53 27.5 
6.8 

28.0 
7.0 

27.8 
6.5 

1.45 28.4 
5.3 

29.0 
5.5 

29.4 
5.9 

3.38 

Med-Post 36.9 
5.0 

37.4 
5.9 

37.7 
6.1 

1.98 34.0 
6.4 

33.7 
6.3 

34.3 
6.4 

1.12 34.1 
5.4 

33.9 
4.9 

34.3 
5.8 

0.39 33.5 
5.7 

33.3 
5.2 

33.6 
5.7 

0.27 

Post 56.8 
6.3 

57.4 
6.6 

56.3 
6.5 

-1.00 55.7 
8.8 

55.1 
8.4 

54.9 
9.1 

-1.59 61.5 
8.7 

61.6 
8.5 

61.1 
8.4 

-0.50 57.1 
7.4 

56.7 
7.9 

56.8 
7.6 

-0.57 

Lat-Post 36.2 
6.8 

35.7 
6.9 

36.2 
7.2 

-0.26 35.4 
7.2 

34.5 
6.6 

34.9 
8.1 

-1.64 33.2 
6.9 

33.3 
6.0 

33.2 
6.6 

0.15 35.6 
7.0 

35.4 
6.4 

35.4 
6.7 

-0.42 

All 43.5 
4.6 

43.1 
4.6 

43.3 
5.0 

-0.19 41.2 
4.9 

40.8 
5.1 

41.1 
5.1 

0.11 42.6 
6.2 

42.7 
6.1 

42.6 
6.0 

0.27 42.0 
4.1 

41.9 
4.1 

42.1 
3.9 

0.20 

Table 13. Regional bone mineral content (mean, SD) and mean changes, 66%. 

 Control Aerobic Resistance Combined 
 Pre Mid Post Avg.Pre- 

 Post  
% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 

Pre Mid Post Avg.Pre- 
 Post  

% Change 
66% BMC                 

Lat-Ant 60.5 
16.5 

57.5 
15.1 

59.9 
13.5 

0.28 55.9 
10.0 

57.5 
10.8 

56.5 
9.8 

1.43 61.8 
13.3 

62.1 
14.7 

61.2 
13.1 

-0.80 56.9 
9.0 

56.4 
11.5 

55.5 
11.1 

-2.65 

Ant 196.6 
16.2 

194.6 
19.1 

195.9 
18.5 

-0.42 183.1 
23.3 

180.4 
25.5 

182.8 
22.8 

-0.12 189.0 
36.9 

190.0 
35.3 

189.6 
36.2 

0.36 187.2 
26.2 

187.6 
25.6 

188.3 
26.7 

0.61 

Med-Ant 73.0 
14.4 

71.4 
14.3 

71.9 
14.9 

-1.52 71.8 
18.0 

70.2 
18.1 

72.1 
17.9 

0.67 72.1 
17.9 

72.9 
17.9 

72.4 
17.0 

0.79 74.7 
14.2 

75.9 
14.3 

76.8 
14.9 

2.81 

Med-Post 98.0 
13.9 

98.5 
15.4 

99.6 
16.3 

1.36 90.8 
17.4 

89.3 
17.8 

91.6 
18.5 

0.82 91.1 
14.4 

90.3 
13.0 

91.3 
14.9 

0.26 89.0 
14.7 

88.6 
12.9 

89.5 
14.5 

0.64 

Post 149.7 
16.5 

150.5 
17.6 

147.3 
16.9 

-1.60 145.7 
21.4 

144.0 
20.6 

143.1 
22.3 

-1.86 161.4 
21.6 

161.4 
21.2 

159.6 
21.3 

-1.00 150.4 
19.4 

148.8 
20.2 

149.1 
19.6 

-0.87 

Lat-Post 94.3 
17.4 

92.2 
18.1 

95.3 
18.6 

0.98 92.7 
18.3 

90.5 
17.4 

92.2 
20.9 

-0.58 87.4 
17.4 

87.7 
15.3 

87.6 
16.8 

0.47 93.2 
18.5 

93.4 
16.8 

93.2 
18.0 

0.09 

All 112.0 
12.2 

110.8 
12.2 

111.7 
13.2 

-0.15 106.7 
12.8 

105.3 
13.3 

106.4 
13.1 

0.06 110.5 
15.2 

110.7 
15.0 

110.3 
14.6 

0.01 108.6 
10.4 

108.4 
10.3 

108.7 
9.8 

0.10 
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Figure 2. Average regional Tb.Dn, 4% (mg/cm3). Pre (solid), mid (dashed), and 

post (dotted) training. 
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Figure 3. Average Regional Trabecular |BMC|, 4% (mg/mm). Pre(solid), mid 
(dashed), and post (dotted) training. 
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Figure 4. Cortical thickness, Ct.Th, 66%, mm. Pre (solid), and post (dashed) train-

ing.  
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Figure 5. Normalized canal radius, Ca.|Rd|, 66%. Pre (solid), and post (dashed) 

training.  

2.4 Discussion 
 In this study, trabecular density (Tb.Dn) in the ultra-distal tibia was the first meas-
ure to reflect bone changes brought on by increased physical activity. This agrees in princi-
pal with other studies that have used pQCT in some manner to monitor changes in bone. 
Findlay et al. (2002) found that pQCT of the distal tibia had the potential to be the most 
sensitive site for measuring morphological changes following tibial fracture. Similarly, 
Veitch et al. (2005) also found trabecular bone to be the best sentinel for measuring changes 
following fracture. This early trabecular modeling is consistent with his faster remodeling 
rate compared to cortical bone, a fact owed to it’s greater surface area (Guo 2001). 

 It should be noted that the density changes noted at the 4% site are at the “apparent” 
level. That is, the average voxel intensity increased. Since each voxel bounded a volume 
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0.4 mm × 0.4 mm × 2.2 mm, and a typical trabeculae is 0.2 mm thick and 1 mm in length, 
this can mean that individual trabeculae could have, on average, increased in density, or 
more likely, that the trabecular latticework became more tightly packed through apposition 
to existing or growth of new trabeculae.  

 Our results further suggest that impact-producing aerobic exercises are the most 
effective at producing such changes. That aerobic exercise seems necessary to produce 
observable changes is not surprising giving the state of knowledge of bone cell mechanobi-
ology. Dynamic loads are best at producing bone rates of strain of sufficient magnitude to 
produce the interstitial fluid flow that appears necessary to stimulate remodeling. On aver-
age, it seems that weight training, although capable of producing high bone strains, yields 
lower strain rates than aerobic exercises.  

 Observing changes in the diaphyseal region of the bone over a short time period is 
more difficult, as was evidenced by the lack of any significant changes in cortical density at 
either the 38% or 66% sites. It is possible that more intense exercise regimens might yield 
greater changes in bone density though with a concomitantly higher risk of injury. Cortical 
remodeling is necessarily slower and the changes in apparent density are more subtle than 
in trabecular bone. Based on the results of this study, we would expect any cortical changes 
to be first observable in the anterior sector where density is slightly less and more remod-
eling activity seems to occur. As with other researchers such as Lai et al. (2005a), we did 
find that the posterior cortex had a higher Ct.Dn than the anterior cortex, both at the 38% 
and 66% sites. 

 To explain the variation in the amount by which trabecular density increased at the 
4% site (particularly in the aerobic exercise group) we sought to correlate those changes 
with moment of inertia (a diaphyseal measure of the mechanical efficiency in bending), 
slenderness index (a measure of the robustness of the bone relative to the body weight) and 
body weight. Changes in density did not correlate with any of these parameters. That they 
did not might either imply that our sample size was too small to detect the correlation, or 
that the 4% site is substantially invariant to these parameters. 

 There are other caveats when looking for short-term, exercise induced changes in 
bone. First, since the changes in morphology are subtle, it is important for pre and post 
images to be registered correctly, lest measurement errors obscure the changes. The main 
sources of error during image alignment are 1) having images taken at slightly different 
locations 2) movement of the subject during the image collection process which can induce 
noise and 3) improper alignment of pre and post images by the analysis software. If the first 
two issues are circumvented however (in other words, if “clean” images are collected from a 
subject at the same location) then the software alignment procedure is robust. 
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 As documented elsewhere, pQCT does have limits to its utility (Ferretti 1997; Ferretti 
et al. 2002). pQCT measures volumetric bone mineral density, vBMD. That is, the amount 
of mineralized bone present within a voxel. It is not calibrated to measure collagen within 
the bone matrix. As collagen production precedes mineralization in new bone formation, 
this first step in functional adaptation and remodeling remains essentially transparent to 
pQCT measures. It is also susceptible to “partial volume effects” (Stratec Medizintechnik 
GmbH 2004). This is particularly true at the endosteal and periosteal boundaries of the 
diaphysis, and in the trabecular bone that dominates the epiphyses of long bones. These 
two sites are, of course, where changes in bone morphology are most likely to occur. 
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3. Israeli Defense Force Cohort Analysis 

3.1 Introduction 
 The Matlab software which was originally written for the University of Connecticut 
study described in Chapter 2 was next used to conduct a preliminary analysis of data 
collected from a training cohort in the Israeli Defense Force.  

 The purpose of this study was to quantify basic geometric and morphological differ-
ences in men and women from the cohort. Stress fracture rates of women in the IDF have 
been found to be as high as 40%. By quantifying the differences between sexes, it may be 
possible to determine which parameters (e.g., cortical bone density, moment of inertia, 
trabecular area) have the largest disparities between men and women and consequently 
may be the best predictors for stress fracture.  

3.2 Methods 
 From an original cohort of 143 subjects, images from 91 subjects, collected during 
induction to Basic Combat Training, were forwarded for analysis. Of these, 20 were male 
and 71 were female. 

 The images were collected by a research team from the IDF and USARIEM using a 
Stratec/Medizintechnik XCT 2000. Subjects were positioned on a chair with the nondomi-
nant leg extended through the scanning cylinder and were asked to maintain a convenient 
and stable position for the duration of the procedure (10-15 minutes). A scout scan was used 
to identify the distal end plate of the tibia. Scans of the tibia were taken using single axial 
slices 2.2 mm thick with voxel size 0.5 mm. These were collected at a translation speed of 
20 mm/s at 4%, 38%, and 66% of tibial length.  

 Analysis of the images was done using the software written for the University of 
Connecticut study described in Chapter 2 with some modifications. The image registration 
process was improved, and the codes were modified to allow stand-alone analysis (in other 
words, no “pre” and “post” alignment was necessary). The essential Matlab codes are 
described in Appendix A. 

 As with the University of Connecticut study, the special-purpose codes written 
allowed for a detailed regional analysis of morphological parameters such as density and 
area. Each bone was divided into six sectors (see Figure 1 in Chapter 2 for sector defini-
tions). In these sectors, density and area were averaged and compared between male and 
female recruits. 
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3.3 Results 

3.3.1 Measures at 4% of Tibial Length 
 Male subjects had slightly higher volumetric density in all sectors at 4% with the 
greatest disparity being in the Anterior and Medial-Anterior sectors where it was on aver-
age 14.6% higher in men than women (Figure 6). Trabecular area was on average 27.5% 
less in women than in men with the largest discrepancy in the medial sectors (Figure 7). 

3.3.2 Measures at 38% of Tibial Length 
 Women in this study had cortical bone density which was 3% higher than men on 
average, though their bone area was on average 32% less. Cortical density at 38% in men 
was 1159.5 ± 101.2 and in women it was found to be 1194.1 ± 103.5. On average, men and 
women had proportionally similar cortical wall thicknesses. This is seen in Figure 10 which 
shows the radius of the intramedullary canal as a percentage of the radius to the periosteal 
bone boundary. Average cortical wall thickness in men was 4.77 mm and in women was 
4.03 mm (Figure 11). 

3.3.3 Measures at 66% of Tibial Length 
 The 66% site displayed the same inverse relationship between cortical density and 
area as at the 38% site. Men had an average cortical density of 1124.3 ± 144.4 compared to 
women who had average values of 1153.0 ± 116.6 (Figure 12). Cortical density values were 
3% lower at the 66% site than the 38% site in men and 3.4% lower in women. Cortical area 
in women was roughly 30% less than that of men at the 66% site (Figure 13). The intrame-
dullary canal is proportionally larger in men at the 66% site than in women (Figure 14) 
though cortical wall thickness was only marginally greater (Figure 15). 

3.3.4 Geometric Measures 
The moment of inertia (about the Medial-Lateral axis, Anterior-Posterior axis, or polar 
axis) was found to be twice as high among the male recruits as it was in women at both 38% 
and 66% (Figure 16 and Figure 17). The bone strength index (BSI) showed a concomitant 
relationship (Figure 18 and Figure 19). The higher moments of inertia in male recruits 
seems attributed to an average bone width which is about 25% higher than in women 
(Figure 20 and Figure 21). 
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Figure 6. Regional Trabecular Density at 4% of tibial length. 
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Figure 7. Regional Trabecular Area at 4% of tibial length. 
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Regional Cortical Density, 38%
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Figure 8. Regional Cortical Density at 38% of tibial length. 
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Figure 9. Regional Cortical Area at 38% of tibial length. 
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Regional Normalized Canal Radius, 38%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

Sector

Male
Female

 
Figure 10. Regional Normalized Canal Radius at 38% of tibial length. 
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Figure 11. Regional Cortical Thickness at 38% of tibial length. 
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Regional Cortical Density, 66%

1000

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

1 2 3 4 5 6

Sector

rh
o Male

Female

 
Figure 12. Regional Cortical Density at 66% of tibial length. 
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Figure 13. Regional Cortical Area at 66% of tibial length. 
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Regional Normalized Canal Radius, 66%
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Figure 14. Regional Normalized Canal Radius at 66% of tibial length. 
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Figure 15. Regional Cortical Thickness at 66% of tibial length. 
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Figure 16. Cross Sectional Moments of Inertia measured about the Medial-Lateral 

(ML), Anterior-Posterior (AP), and Polar axes at 38% of tibial length. 
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Figure 17. Cross Sectional Moments of Inertia measured about the Medial-Lateral 

(ML), Anterior-Posterior (AP), and Polar axes at 66% of tibial length. 
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BSI, 38%
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Figure 18. Bone Strength Index measured about the Medial-Lateral (ML), 

Anterior-Posterior (AP), and Polar axes at 38% of tibial length. 
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Figure 19. Bone Strength Index measured about the Medial-Lateral (ML), 

Anterior-Posterior (AP), and Polar axes at 66% of tibial length. 
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Figure 20. Diaphyseal width measured along the Medial-Lateral (ML) and 

Anterior-Posterior (AP) axes at 38% of tibial length. 
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Figure 21. Diaphyseal width measured along the Medial-Lateral (ML) and 

Anterior-Posterior (AP) axes at 66% of tibial length. 
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3.4 Discussion 
 While the geometric differences in males and females highlighted in this preliminary 
study are not wholly unexpected, this study did illustrate two ways in which women are at 
higher risk of stress fracture than men. First, the female recruits in this study had cortical 
bone which was more highly mineralized. While a higher mineral content may contribute to 
bone strength, it is also more brittle and prone to damage accumulation. 

 The second reason is more an issue of mechanical efficiency. The cross section of the 
diaphysis of the tibia in women gives a moment of inertia roughly half of that of men. This 
implies that the bones of the female recruits are half as able to deal with bending stresses 
as their male counterparts. In light of this, it is not surprising the tibias of the female 
recruits have stiffened (via greater mineralization) to compensate for this fact. While it is 
true that women weigh, on average, significantly less than men, the resulting load on the 
tibia is generally not so much less (that is, it is not usually half of a typical male tibial load) 
as to make up for the difference in moment of inertia. 

 



 

4. Patient Specific Stress Analysis 

4.1 Background 
 Bone is a living tissue whose function and adaptation are mechanically mediated, and 
bone related diseases often have a mechanical pathogenesis. Effective diagnosis, interven-
tion, and treatment of maladies such as stress fracture and age-related bone loss could 
greatly benefit from an understanding of the mechanical environment that results in vivo 
during normal and atypical physical activity. The mechanical stimulus is, however, both 
highly patient and location specific. The goal of this study is to research and develop a com-
putational method with potential clinical practicality for assessing the stress distribution in 
long bones.  

 This Background section has three parts. In the first we will present the rationale for 
this project by briefly summarizing mechanobiology and its role in some bone related dis-
eases. Next, we will describe the main difficulties in making patient-specific assessments of 
the mechanical state (such as stress or strain), specifically in the context of intervention of 
tibial stress fractures, which is the focus of the Bone Research portion of the Overuse Injury 
Modeling project. Finally, we will outline advanced computational modeling and solution 
techniques and some preliminary results that we have achieved. 

4.1.1 Introduction: Mechanobiology in bone related diseases 
 Mechanobiology refers to the interdisciplinary study of the regulation of biological 
processes by mechanical stimuli (Carter et al. 1998). In bones, a change in the predominant 
ambient mechanical state has long been known to lead to adaptations in the overall shape 
and density distribution within a bone (Chamay and Tschantz 1972; Frost 1964; Wolff 
1892). While mechanically induced stimuli are part of the normal function of healthy bone 
tissue (regulating processes such as mRNA protein synthesis, cell proliferation, differentia-
tion, or apoptosis) abnormalities in stimulus can contribute to such bone related problems 
as stress fracture and osteoporosis. 

 Mechanotransduction is at the heart of bone remodeling and functional adaptation. 
Mechanotransduction is the ability of a cell to sense and respond to a mechanical stimulus 
such as stress or strain. A population of osteocytes residing in a region of bone tissue sense 
the mechanical demands placed on them, and respond by recruiting osteoclast and 
osteoblast precursors as needed. This seems to be done by some combination of chemical 
signaling, mRNA expression, and gap junction communication. While many insights have 
been gained into the signaling pathways that drive remodeling, it remains unclear exactly 
how the mechanical-to-electrochemical signal transduction occurs. 



 

 Both clinical and cell-level research has, however, implicated dynamic loads as being 
crucial for mechanotransduction. In long bones of the lower extremities, the strains which 
have been observed in vitro to stimulate a chemical response are far larger than those 
experienced by the bone organ in vivo. So how then, can these daily activities maintain 
healthy bones? The answer may lie in a process of strain amplification (Figure 22). 
Dynamic loads are known to produce fluid flow in the lacunar-canalicular system in which 
osteocytes reside (Knothe Tate et al. 1998). These osteocytes are tethered in place by a hair-
like matrix between their cell processes and the canal walls. As fluid flows through this 
matrix, it results in a drag force which stretches the long, finger-like processes (You et al. 
2002). The cell process strains generated during this stretching have been shown to be 
many times larger than organ level strains–large enough to elicit a cellular response (Han 
et al. 2004; Weinbaum et al. 2003). Thus, the mechanical stimulus most important for 
inducing remodeling activity may be the local rate of strain, and not simply the static stress 
or strain. 

 

 
 
Figure 22. A model of strain amplification from the organ level (A) to tissue-level 

strain rate (B) to the osteocyte residing in the lacunar-canalicular system (C1, 
C2). Image courtesy of Melissa Knothe-Tate, Case Western Reserve University.  

 

 While the rate of loading may drive mechanotransduction, it is the peak values of 
static stress and strain which are responsible for the fatigue damage accumulation known 
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as stress fracture. Stress fractures result when the rate of extracellular matrix (ECM) 
microcracking generated by the repeated loading of a bone exceeds the rate at which new 
secondary osteons are created by basic multicellular units (BMUs). Eventually, microcracks 
coalesce and form a painful fatigue fracture. The remodeling process which is designed to 
clear damaged tissue may actually exacerbate the problem in some situations. Voids gener-
ated by osteoclastic removal of the damaged ECM may act as a stress attractor. Repeated 
stresses to the area following the induction of targeted remodeling have been observed to 
lead to fatigue fracture (Muir et al. 1999). Whether this remodeling is truly targeted or sim-
ply stochastic is unclear (Costa Gomez et al. 2005). So then, in answering the question of 
what causes stress fractures, it is first necessary to understand: 

1. The character of bone in which microdamage is most likely to occur. 

2. The level of mechanical stimulus likely to lead to microdamage. 

3. The role of mechanotransduction in aiding or exacerbating fracture. 

 A few generalizations can be made regarding these issues. Microcracking seems more 
likely to occur in cortical bone which is more highly mineralized (Wasserman et al. 2005). 
The degree of mineralization appears to be a function of the predominant mechanical state 
in situ. Bone which is typically loaded in tension tends to have lower mineral density, and a 
higher amount of remodeling activity than bone whose ambient state is compressive (Bell et 
al. 1999; Skedros et al. 1994). Bone which is more highly mineralized will strain less under 
a given load than bone which is less mineralized, but it tends to be more brittle. Thus the 
magnitude of strain itself is not a good predictor of damage propensity (Donahue and 
Sharkey 1999). In the tibia (which will be the focus of this effort), the highest bone mineral 
density (BMD) tends to be found in the posterior region, with the anterior cortex having the 
lowest BMD (Lai et al. 2005a). The largest strains in the tibia are found in the anterior cor-
tex which is primarily loaded in tension. The predominant state on the posterior side is 
compression.  

 The local mechanical stimulus affects the architecture of bone as well. In young 
adults, the amount of physical activity was associated with cortical bone size and trabecular 
bone density (Lorentzon et al. 2005). At the tissue level, the organic collagen fibers imbed-
ded in cortical bone typically align transversely to the direction of compression. Bone tissue 
typically loaded in tension results in collagen fibers collinear with the load path (Riggs et 
al. 1993). 

 As bones age, the remodeling rate slows, and concern for fatigue damage-induced 
stress fractures gives way to a concern for instantaneous (and often catastrophic) fracture 
due to decreased mechanical competence. Even in older adults not diagnosed with osteopo-
rosis, there is a marked decrease in bone strength that occurs during aging. Overall colla-



 

gen content decreases concomitantly with a decreased level of stress needed to induce frac-
ture (Bailey et al. 1999). The porosity of cancellous bone increases, and the diaphyseal cor-
tex thins from bone loss at the endosteal boundary, though this is sometimes accompanied 
by a slight gain in periosteal circumference. Thus, there is a double effect of increased brit-
tleness with decrease in cortical thickness. The result is that daily activities produce higher 
stress in more fracture-prone material. This phenomenon is often exacerbated by decreased 
hormonal levels which are particularly acute in women following menopause. 

 The mechanical stimulus at the heart of all these phenomena (mechanotransduction, 
damage accumulation, and to a lesser degree, age-related bone loss) is a highly patient-spe-
cific interplay of anthropometrics, bone morphology, density distribution, and physical 
activity (see Figure 23, for example). And yet the ability to estimate stimuli such as stress 
and strain in a patient has not kept pace with mechanobiology research. Without research 
into techniques for a rapid, accurate assessment of a patient’s relative bone strength, cel-
lular research cannot fully make its way into the clinic and benefit the warfighter. 

 
Figure 23. Variations in shape and density distribution from 16 female partici-
pants, age 18-35, of the University of Connecticut study (see Chapter 2). Images 

were taken by pQCT at 38% of tibial length. These morphological variations, 
combined with individual anthropometrics and physical activity, will lead to a 

highly patient and location specific stress/strain profile. 
 



 

4.1.2 Current challenges to patient-specific computational modeling 
 While mechanobiological bone research begins at or below the cellular level, and has 
as its end goal improved patient care, the gap between is bridged by clinical data collection 
and computational mechanics. In the case of patient-specific stress assessment (for fatigue 
or brittle fracture intervention), there are three overarching challenges: rapid model 
generation, rapid solution, and extensive, well-documented fracture morbidity data. This 
study addresses the first two of these issues with the hope that fracture morbidity data can 
be collected after the rapid model generation/solution infrastructure has been developed. 

 Rapid model generation is the process of obtaining, with minimal time and measure-
ment, a three dimensional representation of the bone of interest. Whole bone CT scans, for 
instance, are not feasible due to the excessive radiation exposure incurred from the many 
slices needed for 3D reconstruction. Peripheral Quantitative Computed Tomography 
(pQCT) scans allow for imaging of the extremities in less than three minutes per slice with 
a radiation exposure of less than 15 mRem per slice, and an image resolution of about.4mm. 
And yet the “virtual bone” needed in a 3D model must capture the overall shape of the bone 
as well as the internal density distribution within. Additionally, the bone model will be 
incomplete without patient-specific estimates of applied forces to the organ. These can 
include both joint contact loads and muscle forces. 

 A number of researchers have addressed the rapid modeling challenge using voxel-
based finite element meshes. These convert individual voxels obtained from high-resolution 
CT directly into hexahedral or tetrahedral finite elements. The uniform size and shape of 
the elements usually, but not always, (Boyd and Muller 2005) produce a model with a 
jagged surface that one might get from building a model bone from stackable toy blocks. 
This approach remains impractical for whole bone modeling due to radiation exposure 
concerns. 

 Rapid solution refers specifically to a finite element analysis (FEA) of the bone. In 
mechanics, FEA is a computational technique for the discretization and solution of 
displacements, strains, and stresses within a (usually complex) structure under prescribed 
loads. Its use is ubiquitous in engineering design, and it has found widespread utility in 
biomechanical applications such as orthopedic implant design and generic bone remodeling 
simulations (Impelluso and Negus 2005). FEA is usually conducted using commercial soft-
ware on desktop workstations. Conducting a FEA on a patient’s bone presents two principal 
challenges: using a sufficient number of elements to capture the complex geometry of the 
object and correctly representing the material properties. Both of these characteristics tend 
to slow the solution time dramatically. 

 If the strain and stress field can be estimated on a patient-by-patient basis, the logical 
next step is to ascertain what activities (defined by the stresses incurred and the corre-



 

sponding number of doses over a given period of time) will lead to fatigue damage. This step 
requires a unique and extensive clinical stress fracture morbidity data from a population of 
subjects, including a detailed activity log, images of their bone morphology, and specific 
documentation of those who incurred stress fracture. This data can be used as a means of 
“calibrating” stresses predicted computationally. 

4.2 Our Approach to Patient Specific FE Modeling 
 In order to rapidly generate fully 3D models of an individual tibia from three pQCT 
scans, a number of codes were written in Matlab and C. These were used in conjunction 
with two proprietary software packages: TrueGrid (a 3D hex mesher) and SolidWorks (an 
engineering CAD package). Once the model was generated, solutions for this study were 
conducted using the Finite Element software, LS Dyna, though any static finite element 
software could be used. Solving for stresses and strains in models with a reasonable 
number of elements typically requires less than 15 minutes on a modern personal 
computer. A more detailed description of the modeling procedure follows. 

4.2.1 pQCT to 3D Model procedure 
 While a detailed procedure is given in Appendix B, here is a summary. 

1. Image registration. pQCT images are registered using a Matlab code called 
regtool.m. The center of the intramedullary canal is calculated at 66% and this 
location is defined as the origin. The 38% image and 4% images are shifted by the 
same amount. 

2. Generic epiphyses, taken from the Standardized Tibia Project, are scaled in 
SolidWorks to match dimensions measured from the subject in the x, y, and z 
directions. 

3. The bone boundary is extracted from the surrounding image. This is done using a 
Matlab utility called boundwriter.m. The transverse boundary of the diaphysis at 
38% and 66% are imported into the CAD package SolidWorks. (See Figure 24). A 
lofted surface is generated in the missing diaphyseal section and the surface of the 
entire tibia is exported. 

4. Utility file tgShaft.m calculates points on the surface of the bone needed as an 
intermediate step for generating a hex mesh in TrueGrid. 

5. tgWriter.m writes a TrueGrid input file which will generate the tibial mesh. 

6. TrueGrid is run and a hex mesh is automatically generated for the patient’s bone. 
(See Figure 25). 



 

 
Figure 24. Diaphyseal boundaries (green and blue traces) imported into a generic 
tibial model of the epiphyses with the diaphysis missing. The patient’s own pQCT 

images are used to model the high stress diaphyseal region. 
 

7. The TrueGrid mesh file is read by an executable file (written in C) called 
meshbounder.c. Meshbounder identifies a list of nodes and elements which will 
correspond to the pQCT images. This is a necessary intermediate step prior to 
assigning bone density to every element of the finite element mesh. 

8. The Matlab code ct2mesh.m reads the subjects pQCT files, and identifies which 
elements in the finite element mesh correspond to each pixel in the subjects 38% 
and 66% pQCT images.  

9. Another C code, matAssign.c, maps bone density from the images to the finite 
element mesh at the epiphyses (using the 4% slice) and the elements located at 38% 
and 66%. Elements in between these mapped areas are assigned bone density based 
on interpolation from the transverse planes where the density is known. 



 

 

 
Figure 25. A finite element mesh of a tibia generated in TrueGrid. 

 

10. A finite element model which captures the subject bone’s shape and density 
distribution has now been generated (see Figure 26). A few other utilities may be 
used at this point such as constrain.c (used for assigning displacement and force 
boundary conditions to whole groups of nodes) or dhr2dyn.c (used for exporting the 
model for use with LS-Dyna). 

 Patient specific finite element models were generated for all 17 subjects in the 
Combined group from the University of Connecticut study (Chapter 2). Two load cases were 
developed: one in which a load of 3BW was applied to the proximal surface with the distal 
surface constrained, and another in which a static 1000N load was applied to the proximal 
end with the distal end again constrained. In each case, 60% of the load was applied to the 
medial side of the bone and 40% was applied to the lateral side.  

 By developing a pQCT-initiated rapid modeling and solution capability, it will be 
possible to conduct tibial stress analyses on every individual in the military cohort to esti-
mate the individual stress and strain distribution resulting from a given activity. It will 
then be possible to compare stress distributions in subjects who incurred stress fracture 
with subjects who did not, and begin to evaluate the relationships between exercise 
regimens to tibial stresses to bone morphologies and anthropometrics. 

 



 

 
Figure 26. A semi-transparent view of the final finite element model of a subject. 
The exterior shape of the bone and the density distribution have been derived 

from three pQCT images taken from the subject. 
 

4.3 Future Improvements 
 Having conducted this pilot study and proven that patient specific modeling is an 
achievable goal future improvements will focus on completely automating the process by 
skipping SolidWorks and TrueGrid altogether. This can be done by developing extensible 
interpolation algorithms to distribute element nodes. There are numerous ways to do this, 
including leveraging current research in statistical shape modeling (Rajamani et al. 2004). 
This would also further speed up model generation time. It would not be impractical to be 
able to acquire images from a subject, generate a 3D model based on those images, and 
conduct a patient-specific finite element model in under 30 minutes using a pQCT scanner 
and a personal computer. Such a capability would be a logical complement to current 
statistical methods of screening recruits at high risk for stress fracture (Figure 27). 
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Figure 27. A two-level protocol for assessing stress fracture risk in recruits. 
 

4.4 Summary 
 Stress fracture onset seems to be a probabilistic, material-fatigue type phenomenon in 
which damage (in the form of microcracks in the cortex) coalesce to eventually form a stress 
fracture. There are two variables related to this mechanical pathogenesis. First, one has to 
know the tibial stresses occurring during activities. Secondly, the number of cycles must be 
known. That is, the number of times the stress-inducing activity occurs is needed over a 
given time period. 

 Estimating the number of cycles of an activity is possible with little effort given accu-
rate activity logs. The first variable however, tibial stress, is highly patient specific, with 
the same activity producing different stresses in different individuals. The procedure 
outlined here is a practical method for estimating these stresses on an individual basis 
using noninvasive diagnostic equipment and a personal computer. 
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Appendix A. pQCT Image Analysis Utilities 

Below is a description of the Matlab utility programs (in their current form) written first for 
the University of Connecticut study and then for the IDF pQCT study.  
 
In general, the results predicted from these codes will be a function of 

- Density calibration formula  
o Example: ρ(mg/cc) = 1484*(I/1000.0) – 337.3  

- Thresholds used 
o What intensity values are trabecular? 
o What intensity values are cortical? 

- Pixel resolution (0.4mm vs. 0.5mm) 
- Image rotation 

o Where is the Anterior direction? 
- Image alignment 

o How do you place a “mid” or “post” image on top of the “pre” image? 
 

I. SubjectReader.m 
A. Reads a set of binary images corresponding to one subject.  
B. An image set is made up of Image Times and Slices 

1. UCONN:  
a. 3 Times (Pre, Mid, Post) 
b. 3 Slices (4, 38, 66) 
c. 9 images 

2. IDF:  
a. 2 Times (Pre, Post)  
b. 3 Slices (4, 38, 66)  
c. 6 images 

C. Extracts the tibia from the rest of the image using various pixel intensity 
threshold rules (tibRead.m). 

1. Images from the right tibia are “flipped” to make them into a left tibia. 
D. Measure the relative location between the centroids of each slice 

1. Identify 32 registration points around the tibial boundaries at each 
slice 

2. Calculate the centroid 
3. Measure the differences in (x,y) centroid locations 

E. Align “Mid” and/or “Post” images to the “Pre” images 
1. This is now (11/30/06) an automatic process 

a. “Mid” and/or “Post” images are shifted and rotated until the 
difference in their boundaries is minimized 

F. Define a “Master Slice” 
1. Typically the “Pre 66%” image 

G. Re-Center the Master Slice image on canal (not the tibial boundary) 
1. Measure the amount that the Master Slice has been shifted and shift 

all other images in the set by the same amount 
H. Shift all “Slave Slices” (4%, 38%) so that their location relative to the Master 

Slice is correct. 



 

I. Rotate all images 
J. Rotation is determined by the “Master Slice” 

1. The cusp (the Anterior crest) of 66% is rotated to be at 90° (Anterior 
direction). 

2. This is also now automatic 
a. Some individuals with “blunt crests” have to be rotated 

manually. 
K. Write output to a binary file for later processing 

1. All images have been rotated and aligned, and had their inner and 
outer boundaries identified. 

II. GeomAnalysis.m 
A. Can read individual subjects or groups from a batch file 
B. Measure A-P width and M-L width 

1. (Max – Min)*mm/pixel 
C. Measure Moments of Inertia (I) 

1. Find all tibial pixels in the cortical range (threshold dependent) 
2. Also dependent on mm/pixel 
3. I-ML and I-AP depend on definition of the M-L and A-P axis 

D. Cortical Area 
1. Look at each pixel in the tibia image 

a. If it falls within the cortical thresholds (800-1500 mg/cc) count 
it 

b. Sum the cortical pixels, convert pixels to mm^2 
E. Trabecular Area 

1. Look at each pixel in the tibia image 
a. If it falls within the trabecular thresholds (100-600 mg/cc) 

count it 
b. Sum the trabecular pixels, convert pixels to mm^2 

F. Density 
1. For each sector of each image, identify all pixels in a given threshold 

range (100-600mg/cc for trabecular, 800-1500mg/cc for cortical) 
2. Average all the densities of all relevant pixels. 

G. BSI 
1. BSI = I * Average Cortical Density 

H. SI (Slenderness Index) 
1. Can calculate if we have the tibial length L, and body weight. 

I. Average Thickness 
1. For each sector, calculate the average difference in radius between the 

endosteal boundary and the periosteal boundary. 
J. Average Radius 

1. This is the canal radius as a percentage of total radius. (As cortical 
wall thins, the average radius approaches 1.) 

2. For each sector, divide the average outer (periosteal) radius by the 
average inner (endosteal) radius. 

 



 

Appendix B. Sample Patient Specific FEA 
Results 

boundWriter.m 
1. Read three image files (*.M01, *.M02, *M03) 
2. Align and rotate images 
3. Define boundary (Outbound, OutboundPol) 
4. Smooth this boundary by averaging nearby values. using boundarySmoother.m 
5. Write tibia38.sldcrv, tibial66.sldcrv containing boundary points of the 38% and 

66% levels. 
6. Calculate diaphyseal widths 

a. ML1 = 38% Med-Lat width 
b. AP1 = 38% Ant-Post width 
c. ML2 = 66% Med-Lat width 
d. AP2 = 66% Ant-Post width 

7. Calculate the x and y scaling factors using widths from the Standardized Tibia 
a. 20.0 = 38% Med-Lat width 
b. 21.5 = 66% Med-Lat width 
c. 27.0 = 38% Ant-Post width 
d. 33.3 = 66% Ant-Post width 

8. Write the tibia.info file with the following  
a. Tibial length (read from pQCTData\DataTables\SubjectData.txt) 
b. The “D-Plane” (15% of Tibial length) 
c. The “38-Plane” 
d. The “66-Plane” 
e. The “A-Plane” (85% of Tibial Length) 
f. The X-Scale factor 
g. The Y-Scale factor 
h. The Z-Scale factor (using a Standardized Tibia length of 354.0mm) 

 
 

SolidWorks 
1. Scale epiphyses 
2. Import the 38% and 66% curves 
3. Construct guide curves prior to making lofted surfaces 
4. Generate the lofted surfaces between sections 
5. Export as IGS file 

 
tgShaft.m 

1.  Read three image files (*.M01, *.M02, *M03) 
2. Align and rotate images 
3. Define boundary (Outbound, OutboundPol) 
4. Smooth this boundary by averaging nearby values. using boundarySmoother.m 
5. Identify coordinates at four angular locations around the 38% boundary: 60, 135, 

225, 270. These are points 
a. [Point1X, Point1Y] 
b. [Point2X, Point2Y] 



 

c. [Point3X, Point3Y] 
d. [Point4X, Point4Y] 

6. Points 5 through 8 are interior to the boundary (see 10/31/06 journal entry) 
a. Points 5 and 7 lie between points 1 and 3 
b. Points 6 and 8 lie between points 2 and 4 

7. Convert the coordinates into XY. Voxel-mm conversion is hardcoded. 
8. Repeat this for the 66%  
9. TGShaftPoints.txt writes a total of 16 points 

 
 
tgWriter.m 

1. Read the tibial length and plane locations from tibia.info. 
2. Read the Scale factors from tibia.info and write them into a “scaling matrix”. 
3. Begin writing TrueGrid (tg) file. 

 
TrueGrid 

1. Generate a mesh in Marc format. 
 
tg2dhr.c 

1. Convert file format to DHR format 
 
meshbounder.c 

1. Read dhr file 
a. material 
b. connectivity 
c. coordinates 
d. fixity conditions 
e. post proc data 

2. Read tibia.info file 
a. tibLength 
b. D-Plane (zD) 
c. 38-Plane (z38) 
d. 66-Plane (z66) 
e. A-Plane (zA) 

3. Determine which nodes are on the surface with SurfaceNodes (in utility/utils.h). 
a. Send the surface nodes to layerNodes. 

i. Determine the surface nodes at z38  
ii. write the z38 surface nodes to *.38s 

iii. Determine the surface nodes at z66 
iv. write the z66 surface nodes to *.66s 

4. Determine which nodes are on the interior of each plane: 
a. Send all nodes to layerNodes, pick out the ones on z38 

i. Write output to *.38n 
b. Send all nodes to layerNodes, pick out the ones on z66 

i. Write output to *.66n 
c. Send all nodes to layerNodes, pick out the ones on zA 

i. Write output to *.An 
d. Send all nodes to layerNodes, pick out the ones on zD 



 

i. Write output to *.Dn 
5. Determine which elements abut each layer 

a. Send all nodes/connectivity to layerElements, pick out the ones on z38 
i. Write output to *.38c 

b. Send all nodes/connectivity to layerElements, pick out the ones on z66 
i. Write output to *.66c 

c. Send all nodes/connectivity to layerElements, pick out the ones on zA 
i. Write output to *.Ac 

d. Send all nodes/connnectivity to layerElements, pick out the ones on zD 
i. Write output to *.Dc 

 
ct2mesh.m 

1. Read the mesh boundary files 
a. *.38s, *.38n, *.38c 
b. *.66s, *.66n, *.66c  

2. Read the Tibia image 
3. Create the image boundary 
4. Scale the coordinates 
5. Re-center the image and boundary 
6. Convert the mesh, image, and boundaries into Polar 
7. Rotate the images 
8. Look through the connectivity arrays for each element  

a. Identify the four nodes making up the element 
i. Node1 

ii. Node2 
iii. Node3 
iv. Node4 

b. Read the coordinates of the each node making up an element 
i. A(x,y) 

ii. B(x,y) 
iii. C(x,y) 
iv. D(x,y) 

c. Cycle through each pixel and determine if it falls within the bounds of the 
connected nodes 

i. Calculate the vectors making up the element (quadVec) 
ii. Calculate vectors from a pixel to a vertex. 

iii. Calculate cross-products as needed. 
d. Average all pixel values falling within the element 

 
matAssign.c 

1. Read dhr file 
a. Material data 
b. Connectivity 
c. Coordinates 
d. Fixity Conditions 

2. Open the connectivity files for the four planes (A, 38, 66, D) 
3. Open the material files 

a. material.038 



 

b. material.066  
4. Interpolate from 66 to 38 along element stacks with elementInterpolator. 
5. Assign densities to the epiphyses 

a. Assign trabecular density to all elements in the interior of the epiphyses. 
b. Assign cortical density to the shell 

6. For all elements 
a. Assign engineering constants to each element 
b. Align principal directions with the z-axis 

 
constrain.c 

1. Apply directional displacements to a specified plane 
 
dhr2dyn.c 

1. Convert input file to LS-Dyna format 
 

 
 
 
Post Processing Utilities 
 
ContourPlotter.m 

1. Reads files called “Countour.txt” for each member of a group 
a. File contains nodal values from three adjacent “strands” of nodes 
b. At each element level, these values are averaged. 
c. For each level: 

i. SigmaI is avg of the three SigmaI’s 
ii. SigmaVM 

iii. SigmaZ 
iv. TauMax 

2. Plots 1st Principal, Von Mises, Z, and Maximum Shear stress (separate traces for 
each member) for a stack of element values 

 



 
Figure 28. Subject 02: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 



 
Figure 29. Subject 04: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 



 

 

Figure 30. Subject 06: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 
geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 

predicted principal stress distribution for a 1000N load. 



 

Figure 31. Subject 13: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 
geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 

predicted principal stress distribution for a 1000N load. 



 

Figure 32. Subject 14: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 
geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 

predicted principal stress distribution for a 1000N load. 



 

Figure 33. Subject 18: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 
geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 

predicted principal stress distribution for a 1000N load. 



 

Figure 34. Subject 30: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 
geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 

predicted principal stress distribution for a 1000N load. 



 

Figure 35. Subject 33: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 
geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 

predicted principal stress distribution for a 1000N load. 



 

Figure 36. Subject 41: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 
geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 

predicted principal stress distribution for a 1000N load. 



 
Figure 37. Subject 42: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 



 
Figure 38. Subject 48: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 



 
Figure 39. Subject 49: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 



 

 
Figure 40. Subject 52: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 



 
Figure 41. Subject 54: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 



 

 
Figure 42. Subject 58: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 



 
Figure 43. Subject 60: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 



 
Figure 44. Subject 80: Top (from Left): pQCT Images, FEA model at 38% (above) and 66% (below), predicted 3D 

geometry, predicted 3D density. Bottom (from Left): Predicted principal stress distribution for a 3BW load, 
predicted principal stress distribution for a 1000N load. 
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Executive Summary 

 The human body is a complex, highly nonlinear system. Biomechanical modeling has 
become an important tool in understanding the neuromuscular and skeletal components of 
this system. The object of this work has been to develop a flexible suite of modeling 
components that can be assembled rapidly to address a majority of biomechanical 
questions. The NMS-Dynamics toolbox provides the basic components needed to build 
biomechanical models. Models can be built to solve kinematic, inverse and forward analysis 
problems. Models built with toolbox were also deployed as standalone applications, and a 
method to scale the data of one subject to other subjects was implemented. 
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1. Introduction 

 As an overview to this project, the Introduction will provide a brief description of 
biomechanical modeling and its importance to biomedical research. Then an outline of 
project objectives and specifically the current year objectives will be given. Following the 
Introduction, the sections will further detail the progress accomplished in developing 
biomechanical modeling software and applying that software to solve specific biomechanical 
problems. 

1.1 Background 
 The modeling, simulating, and analyzing of the human neuromuscular system have 
become an increasingly important area of research. This has been driven by two factors: the 
basic desire to understand the fundamental mechanisms of the neuromuscular system, and 
by the increasing desire to improve health and reduce injuries to humans. For the military, 
the desire to improve health and reduce injuries is a continual challenge. Military research-
ers face challenges to develop better equipment, improve physical training regimens, and 
design better methods to assess the health status of soldiers.  

 To address these challenges, one approach is to perform only experiments or field 
observations and then analyze the measurements. From the analysis, conclusions are made 
about how the equipment or training regimen could be improved. This experimental 
approach, however, suffers several limitations. The human body is a complex and highly 
nonlinear system; therefore significant variations in intra-subject and inter-subject meas-
urements can be expected. Consequently large numbers of subjects are required to obtain 
statistically significant results. However, even with statistically significant results, the 
underlying mechanisms remain unknown due to the empirical nature of statistics. These 
results can only answer the question posed by the experiment. In addition, human experi-
mental work requires large amounts of resources, is difficult to control with large numbers 
of subjects over long periods of time, and has ethical limitations.  

 More recently, biomechanical modeling has become an important part of understand-
ing the human neuromuscular and skeletal systems. With modeling, the human body is 
represented with sets of mathematical relationships and related parameters. Utilizing 
computer simulations, the model can simulate various scenarios to examine their effects on 
the health and performance of the body. In addition, by varying the model parameters 
during a simulation a better understanding can be gained of the underlying mechanisms of 
the neuromuscular system, and the influence of those mechanisms on the health and 
performance of the body. The advantages of modeling are that many more tests can be 
performed rapidly, with fewer resources, and with no need for concerns about subject 
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safety. Biomechanical models however, must be developed and validated with experimental 
data to ensure their results are credible.  

 The construction of an accurate model begins with experimentation, but through 
development and utilization of the model further lines of research are discovered. Modeling 
helps the researcher understand which mechanisms are most influential. Therefore, a 
combination of experimentation, analysis, modeling and simulation are needed to confront 
the complexity of the neuromuscular and skeletal systems of the human body. 

1.2 Objectives 
 Once a biomechanical model is developed it can be a very powerful tool for analysis. 
However developing a model can be a time consuming process due to the validation process. 
Consequently, various modeling applications have been developed to ease model develop-
ment. These modeling applications, however, are targeted at a specific type of biomechani-
cal problem, do not allow for rapid development, or do not allow for easy integration with 
other analysis software. Therefore our objective during this project was to develop a neuro-
muscular and skeletal modeling application that provided a flexible suite of modeling tools 
which could be assembled rapidly to address a majority of biomechanical questions. 

1.3 NMS-Dynamics Toolbox 
 The resulting product is the NeuroMuscular and Skeletal Dynamics (NMS-Dynamics) 
Toolbox. NMS-Dynamics is a block programming language that allows users to develop 
biomechanical models by connecting blocks representing bones, joints, muscles, and passive 
tissues (Figure 1-1). These models can be utilized to analyze experimental data and to 
simulate novel scenarios. 

 Key features of the toolbox include: 

• Efficient: Models can be assembled from standardized components through a 
graphical interface; therefore, users are spared from basic programming and can 
concentrate on the advanced aspects of the model 

• Consistent: Developing models in a systematic way will make the comparison of 
results easier 

• Flexible: The toolbox components are modular so that model assembly and compo-
nent improvements are easily accomplished 

• Manageable: Simulation results can be stored in a systematic and easily retriev-
able manner  

• Powerful: The Matlab and Simulink platforms by Mathworks (www.mathworks. 
com) form the software engine 

• Reliable: The components and algorithms will be rigorously developed and tested 
• Open: The toolbox allows for the addition of new algorithms and components 
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Figure 1-1. Example of a biomechanical model built with the  
NMS-Dynamics toolbox. 

 

 The toolbox can be applied in two manners. The toolbox can be utilized by individuals 
developing their own models. These individuals can specify the block parameters and 
simulate their model under various conditions such as walking or running. This rapid 
development and simulation of biomechanical models enables the user to focus their time 
on answering their biomechanical questions and spend less time developing the model 
needed to answer their question. 

 The second way the toolbox can be employed is during the development of custom 
applications for a customer. The developer can use the toolbox to build the underlying 
model for their customer and then build an interface for the customer to easily interact with 
the model. As a result, the customer does not need to spend time building the application to 
do their analysis or simulation. The model and interface are built for them so that they can 
focus on utilizing this tool to answer their particular question. 
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1.4 Deploy the Models in Standalone Software 
 The other objectives of the effort also included: 

• Developing the ability to deploy a NMS-Dynamics model as a standalone applica-
tion 

• Developing a method to scale kinematic and ground reaction force data from one 
subject to another subject of different height or weight 

• Improving the flexibility of the model building code (e.g. removing hard coded 
values and special case programming) 

 Enabling a model to be deployed and improving the model building process are 
described in the next section. The steps involved in building a model will be explained and 
then the improvements made to the building process will be discussed. Following that 
section, example applications will be presented to demonstrate the types of problems that 
can be addressed with the toolbox along with a method developed to scale data between 
subjects. In the fourth section, developing user interfaces for the models will be described. 
In the last section, the project accomplishments will be summarized. 
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2. Model Development 

 This section describes the process of building and customizing a model using the 
NMS-Dynamics toolbox. Building a model requires connecting the appropriate segment and 
joint blocks together and setting their parameters. The ability to adjust the model parame-
ters quickly provides the user flexibility when customizing the model. 

2.1 Biomechanical Modeling Engine 
 Matlab® and Simulink® (MathWorks, www.mathworks.com) form the basis of the 
mathematical engine underlying this neuromuscular and skeletal modeling application. 
Matlab is a high-level computer language that provides users with a robust set of functions 
and algorithms to perform computationally intensive calculations. Simulink is a platform 
developed for model-based design. It consists of a graphical interface where models are built 
by connecting blocks representing mathematical operations, signal processing functions, 
and control system components. With this platform, models can be developed rapidly and 
solved with the algorithms included in the platform. Simulink also contains a toolbox called 
SimMechanics that contains specific blocks such as masses, springs, dampers, and joints for 
solving rigid body dynamics problems.  

 The advantages of using Matlab are the power of its included functions and algo-
rithms, and that the high-level language allows for easy programming. The graphical inter-
face of Simulink provides a rapid means for building models without typing code, and 
SimMechanics provides the functions necessary to solve static and dynamic rigid body 
problems. The basic rigid body, force, and joint components of SimMechanics allow for 
custom blocks representing biomechanical components such as bones, muscles, and liga-
ments to be built. 

2.2 Model Components  
 NMS-Dynamics is a rigid body toolbox for biomechanical analysis. It includes rigid 
bodies that can be customized to represent specific bones by changing the inertia matrix 
and mass of the body. The toolbox also has the ability to connect the bodies with many 
types of joints including: revolute, transverse, and universal. The toolbox includes elements 
to model the passive and active characteristics of ligaments and muscles. For ligaments, 
spring and damper blocks can be customized to model linear and nonlinear systems. For 
muscles, musculotendon models have been developed to include both the passive and active 
(force-length and force-velocity) properties. The flexibility of the toolbox allows for many 
different musculotendon models to be developed and utilized. A description of the currently 
developed blocks is included in Appendix A. 
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2.3 Model Building  
 For any biomechanical model, the basic components include:  

• Rigid body segment blocks, which represent bones 
• Joint blocks, which describe how the bones move relative to each other 
• Passive element blocks, which represent passive biological tissues  
• Active element blocks, which represent active muscles 

By combining these blocks in an appropriate manner, biomechanical models of the whole 
body or portions of the body can be developed. 

 In addition to the model being developed, the simulation environment must be devel-
oped. Environmental parameters include the location and orientation of the model with 
respect to the inertial reference frame, the direction and magnitude of the gravitational 
frame, and the inputs and outputs to the model. Depending on the type of problem being 
addressed, the inputs to the model can include ground reaction forces, joint kinematics, and 
muscle activations. For system outputs, the metrics most relevant for addressing the prob-
lem will be measured or calculated, and passed out of the model.  

 With all of the necessary blocks added and connected appropriately, the block 
parameters must be set to properly describe the properties of a particular subject. For 
example, the bone length in the model is set by measuring the bone length of the subject. 
However if the model needs to be applied to several different subjects, manually changing 
the block parameters will be a slow process. Consequently, routines were developed to 
automate the process. 

2.4 Customizing Models 
 For each subject, their specific model parameters are stored in a parameter file. To 
customize the model to a particular subject, the customization routines read the appropri-
ate parameter file and apply those values to the model. Consequently, the model can easily 
be adjusted to reflect the properties of a new subject by creating a parameter file for that 
subject and then running the customization routines.   

 The routines divide the customization process into 3 steps (Figure 2-1). Step 1 
involves configuring the environmental parameters including: gravity, the type of analysis 
(i.e. forward or inverse dynamic analysis) and the numerical solver to utilize. Then the 
model blocks are customized. The segment masses, moments of inertias, and dimensions 
are set. The axes of rotation of the joints are specified. The elasticity and viscosity parame-
ters of the passive properties and the active muscle properties are configured. The last step 
includes setting the input files to load and setting the location for saving the calculated 
outputs. 
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Figure 2-1.  Model customization. Steps involved in customizing a model  
for a specific subject and scenario. 

 

 The initially developed routines had some limitations. Not all segment blocks or types 
of joint blocks were compatible with the routines. The routines hard coded values into the 
model, so that for each new subject the model had to be recompiled before it was deployable. 
Although the routines had automated a majority of the process, there were more efficiencies 
that could be added 

2.5 Improvements to Model Development Process 
 One of the objectives of the effort was to make the model deployable as a standalone 
application. To accomplish this goal, the model needed to be compiled into an executable 
file. Consequently, improvements in the modeling process needed to be accomplished so 
that the models could be quickly and efficiently built, and once compiled could be adjusted 
to reflect the properties of different subjects and scenarios. 

 Initial improvements to the customization process included an increase in the number 
of joint types that could be configured automatically. Previously only planar joints could be 
configured. Now joints including hinge, planar, prismatic, universal, and 6 degree of free-
dom (DOF) can be configured. Improved customization routines enabled variable names to 
be set as parameter values. This allowed the flexibility of customizing the model after it 
had been compiled, thereby removing the need to recompile the model every time after 
customization. Improved error checking during the development process also ensured that 
the compiled model would execute without errors. 
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 The model compiling process was improved with routines that automatically produced 
the parameter files, such as the segment parameters for each subject, needed by the 
compiled model. Also, in the initial version, the input signals such as the ground reaction 
forces to the model were hard coded. Currently, this limitation has been eliminated and 
now different inputs can be read and utilized by the model without the need to recompile 
the model. 

 Through these many improvements, the robustness of the development process was 
enhanced. The speed of configuring models to particular subjects or scenarios was 
increased, and the compiling process was further automated. 
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3. Applications 

 To illustrate the capabilities and improvements to the NMS-Dynamics toolbox, a 
head-neck model and a lower extremity model were developed. For the head-neck model an 
inverse and a forward analysis were performed. For the lower extremity model, an inverse 
analysis was completed. The following subsections will explain inverse and forward 
dynamic analysis. Then each model and its corresponding analysis will be discussed. 

3.1 Background 

3.1.1 Inverse Dynamic Analysis 
 For an inverse dynamic analysis, the goal is to calculate the joint forces and moments 
needed for a specific system configuration. To achieve this goal, the necessary data are the 
kinematics of the system and the external forces applied to the system. With the data and 
the equations of motion of the system, a solution can then be computed. 

 For a biomechanical problem, the necessary kinematic data can be measured from 
accelerometers mounted on body segments or from a motion capture system. With acceler-
ometers, the acceleration data can be integrated to get the required velocities and displace-
ments. With a motion capture system, the displacement data can be differentiated to obtain 
velocities and accelerations.  

 The externally applied forces in a biomechanical analysis of human systems are 
usually ground reaction forces. Force plates can measure these reaction forces. For other 
applied forces such as the impact during a vehicle crash, a human surrogate with force 
transducers is initially used to measure the applied force. 

 For the equations of motion of the system, the inertial properties of the body segments 
must be known. These properties can be obtained through direct measurement on the 
subject. There are also regression equations to calculate these values based on a number of 
anthropometric measurements such as body weight, stature and specific geometric dimen-
sions of individual segments. Solving the equations of motion gives the joint reaction forces 
and moments. A major advantage of utilizing NMS-Dynamics is its power to develop and 
solve the equations of motion for the user. 

3.1.2 Forward Dynamic Analysis 
 A forward dynamics problem is the opposite of the inverse problem. For this problem, 
the goal is to determine the motion of the system due to forces and moments being applied 
to the system. To calculate the solution, the necessary data are the joint forces and 
moments at each degree of freedom, and all externally applied forces.  
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 The joint forces and moments are generated by the actuators that cross the joint. For 
biomechanical analysis, muscles, tendons, and ligaments are the actuators of the system. 
Tendons and ligaments are passive elements that produce force based on their length or 
velocity. Muscle is an active element. The neuronal input to muscle determines the level of 
activation and therefore the force generated by the muscle.  

 To solve a forward dynamics problem the inertial properties of the body segments 
must also be known. If muscles are included the activation levels of each muscle as a func-
tion of time must be included. If no muscles are included, the joint torques as functions of 
time must be specified. In addition, any externally applied forces must be specified. Inte-
grating the equations of motion through time gives the motion at each degree of freedom of 
the model. The advantage of utilizing NMS-Dynamics is its ability to develop and integrate 
the equations of motion for the user. 

3.2 Head-Neck Model: Inverse Problem 

3.2.1 Summary of Previous Work 
 The head-neck model (Figure 3-1) contains rigid bodies representing the head, and the 
spinal vertebrae of C1, C2, and C3. The joints between each of these segments are planar 
joints, which allow translation along the X (forward direction) and Y (upward vertical direc-
tion) axis, and rotation about the Z (lateral direction) axis. Passive elements at each of the 
joints provide joint elasticity and viscosity. No muscles are included in this example model, 
and gravity acts in the –Y direction. 

 Other elements needed for a complete model include an inertial ground block, blocks 
to prescribe the motion of each degree of freedom, and a block to save the output data. The 
model via the C3 segment is connected to the ground block with an in-plane joint, which 
allows translation along the X and Y axes. For each joint, a motion block (e.g. IC_4_C1HD) 
prescribes the kinematics for each degree of freedom of the joint. During the simulation, the 
kinematic data is loaded from a file. The data from the simulation is saved to a file with the 
aid of the Save2File block. Additionally, sensor blocks are attached to the head-neck model 
to view the results during the simulation. 



11 

 

 

(a) HNmodel and related blocks needed to form a complete Head-neck model 

Figure 3-1. Head-neck model for inverse analysis 
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(b) Subcomponents of HNmodel 

Figure 3-1. Cont’d 
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 The model parameters are defined in a passdata.dat and segdata.dat files. The 
segdata.dat file defines the mass, moment of inertia, and the location and rotation of each 
rigid body relative to the proximally connected body. The passdata.dat file defines the equa-
tions relating the elastic and viscous properties to the position and velocity for each degree 
of freedom. The equations can be linear or nonlinear. As the last step before simulating the 
model, these parameter values from the .dat files are loaded and applied to the model.  

 For this inverse dynamics example, the model was simulated while positioned in a 
static posture. During the simulation, the forces and torques needed at each degree of free-
dom were calculated so that the model maintained its posture (Table 3-1). The calculated 
results (Figure 3-2) were then saved to an output file. 

Table 3-1. Kinematic Input to Model. 

Joint Rotation about Y-axis
Angle (°) 

X 
Position (m) 

Z 
Position (m) 

C1 – HD  5 0 0 

C2 – C1 5 0 0 

C3 – C2 5 0 0 

The velocities and accelerations were all set to zero. 

 

 Using NMS-Dynamics, a user is able to rapidly build and simulate models without the 
need to derive the equations of motion. Through this inverse simulation example, a four 
segment model was built and simulated. The simulation was able to calculate the necessary 
forces and moments for the model to hold a static posture. 
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(a)  Head-C1 Joint (b) C1-C2 Joint 

(c) C2-C3 Joint 

Figure 3-2. Inverse analysis of head-neck model.  
Calculated joint forces and moments required to maintain  

the static posture of the model 
 

3.3 Head-Neck Model: Forward Problem  

3.3.1 Summary of Previous Work 
 As with the model described for the inverse analysis, the head-neck model for the 
forward analysis (Figure 3-3) contains rigid bodies representing the head, and the spinal 
vertebrae of C1, C2, and C3. The joints between each of these segments are planar joints. 
Passive elements at each of the joints provide joint elasticity and viscosity and no muscles 
are included. 
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(a) HNmodel and related blocks needed to form a complete Head-neck model 

Figure 3-3. Head-neck model for forward analysis. 
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(b) Subcomponents of HNmodel 
 

Figure 3-3.  Cont’d 
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 Similar to the inverse analysis model, an inertial ground block and a block to save the 
output data are included. The difference with the forward model is that the blocks which 
prescribed the joint motions have been removed. Those blocks have been replaced with 
blocks (e.g. IC_4_C1HD) which prescribe the joint forces and moments. 

 To initialize the model parameters and prepare the model for simulation, a function is 
executed to load the parameter values from the appropriate .dat files and apply them to the 
model. The applied joint forces and moments are used by the simulation at each time step 
to determine the joint angle and position trajectories. 

 For the forward dynamics example, the model was simulated with constant joint 
forces and moments (Table 3-2). During the simulation, the resulting joint trajectories were 
calculated (Figure 3-4) are then saved to an output file. 

Table 3-2. Force and Moment Inputs to the Model 

Joint Y 
Moment (Nm) 

X 
Force (N) 

Z 
Force (N) 

C1 – HD  -1.71 -7.99 45.31 

C2 – C1 -1.67 -4.20 47.98 

C3 – C2 -1.72 0.00 50.62 

 

 

Figure 3-4. Calculated joint trajectories. 
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The initial position of the model was the same as the inverse problem example. There-
fore if the same forces and moments calculated from the inverse problem were applied in 
the forward problem the model should remain stationary, which the results show. This 
illustrates how the NMS-Dynamics toolbox can solve a forward dynamics problem to 
determine the trajectory of a model across time.  

3.4 Lower Extremity Model: Inverse Problem 

3.4.1 Model Building 
 During the current year, a lower extremity model was developed, which included the 
thigh, shank, and foot segments of a single leg. At the hip joint a 5 DOF joint was employed 
(3 DOF for linear movements, 1 DOF for flexion and extension, and 1 DOF for adduction 
and abduction). The knee was a hinge joint with 1 DOF for flexion and extension. The ankle 
had 1 DOF for plantar flexion and dorsiflexion. The input signals to the model included the 
ground reaction forces applied to the foot, joint angle kinematics applied at each joint and 
planar kinematics applied at the hip joint. The outputs calculated included the reaction 
forces and moments at each joint. 

 The data for the ground reaction forces (GRFs) and joint kinematics were measured 
during an experiment that involved subjects wearing different types of boots and loads on 
their back while walking. The ground reaction forces were measured by a force platform. 
Markers placed on the subject provided the joint kinematics. The measurements contained 
information for one walking stride. 

 Once the model was built, the toolbox engine determined the equations of motion and 
solved them during the simulation. Some of the results from simulating the model are 
included in the figures below (Figure 3-5 and Figure 3-6). The first figure (Figure 3-5) 
shows the reaction forces at the ankle joint (+x, forward direction; +y, lateral direction; +z, 
upward direction). The largest force is in the z-direction which corresponds to the force 
needed to support the body weight. The second largest force is in the x-direction which 
corresponds to the breaking and propulsion of the body as it moves forward. Lastly, the y-
direction has the smallest force values, because the body acceleration in this direction while 
walking forward is the smallest. 

 The second figure (Figure 3-6) shows the ground reaction force in the upward vertical 
direction (+z-direction) along with the reaction force at the ankle in the z-direction and the 
force of gravity on the foot. Since the foot is a rigid body between the ankle and the ground, 
the reaction force at the ankle can be calculated with the following equation: 
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Figure 3-5. Reaction forces at the ankle. 
The +x-direction is forward, +y-direction is lateral, and +z-direction is upward. 

 

Figure 3-6. Foot forces. Ground reaction force at the foot, reaction force 
at the ankle, and gravitational force on the foot.  

Forces shown are in the z-direction. 
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grf ankle gravity foot footF F F m a+ + = ×  

where  Fgrf =  ground reaction force at the foot (N) 

  Fankle = reaction force at the ankle (N) 

  Fgravity = force of gravity due to mass of the foot (N) 

  mfoot = mass of the foot (kg) 

  afoot = acceleration of foot COM (m/s2) 

 

 Therefore as a simple check of the model setup, the GRF, the ankle joint reaction 
force, and the force of gravity on the foot were added and the sum divided by the accelera-
tion of the foot. The result was equal to the mass of the foot, which indicates the model was 
setup properly and was calculating the reaction force correctly. 

3.4.2 Scaling Subject Data 
 By being able to scale the kinematic and GRF data by the subject’s anthropometry 
and the properties of the movement, estimates about joint forces and moments can be 
computed without putting the individual through a laboratory protocol. This ability is very 
advantageous because recruiting subjects is always a difficult task. Additionally, with a 
good model many more simulated experiments can be performed, and experiments not 
possible in the laboratory or ethically feasible can be simulated. 

 For scaling data from one subject to another subject, it was assumed that the subject 
anthropometry fell within the 50th percentile male. Scaling data from one subject (Subject 
A) to another subject (Subject B) was based on the anthropometry of the two subjects. 
Segment lengths and masses were calculated based on tables from the literature (Contini, 
1972; Dempster, 1955). Kinematic data were scaled based on the height ratio of the 
subjects, and the ground reaction force data were scaled based on the height and body 
weight ratios of the two subjects.  

 To scale kinematic data, a scaling factor was first determined by dividing the height 
of Subject B by the height of Subject A. For the linear kinematic data of the hip, the velocity 
of Subject B needed to be equal to the velocity of Subject A for any given point within a 
stride. However with a height difference between the subjects, the stride length of Subject 
B would be longer or shorter depending on whether Subject B was taller or shorter than 
Subject A. Therefore to maintain the same velocity, the length of time needed to complete a 
stride for Subject B also needed to change. The time per stride for Subject A was multiplied 
by the scaling factor to determine the time per stride for Subject B. Similarly the position 
data for Subject A were multiplied by the scaling factor to determine the position data for 
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subject B (Figure 3-7). Since the velocity magnitudes were the same between subjects, the 
acceleration magnitudes also remained the same. The only change for the velocity and 
acceleration curves was the amount of time between data points, which changed by the 
scaling factor multiple. 

  

(a) Scaling of hip position data (x-direction) (b) Scaling of hip position data (z-direction) 

Figure 3-7. Example of scaling kinematic data.  
Data for Subject B was calculated by scaling the data of Subject A.  

Subject B is taller and heavier than Subject A. 
 

 For the angular kinematic data, the scaling process was similar, however the angular 
position data needed to remain equal between the Subject A (the given subject) and Subject 
B (the scaled subject). The angular velocities of Subject B were determined by multiplying 
the angular velocities of Subject A by one over the scaling factor; therefore if subject B was 
taller than Subject A, the angular velocities of Subject B would be smaller than those of 
Subject A. Consequently, subject B would have a longer stride, but a lower stride frequency 
so that the overall horizontal velocity of the subjects would be equal. 

 To scale the ground reaction forces, equations from the literature (Borghese et al., 
1996; Cavanagh and Williams, 1979; Dufek et al., 1990; Hamill et al., 1984; Hamill and 
Bensel, 1996; Himann et al., 1988; Kinoshita, 1985; Martin and Marsh, 1992; McCrory et 
al., 2001; Nilsson and Thorstensson, 1989; Powers et al., 1999; Simpson and Jiang, 1999; 
White et al., 1998; Woodmansee et al., 2004) were utilized. The equations calculate the 
peak braking and propulsion forces (X-direction), and the two peak vertical forces (Z-direc-
tion). These equations calculate the forces based on the velocity of movement and the body 
weight of the subject. Therefore to calculate the scaled ground reaction force data, the 
ground reaction force curves from Subject A were scaled so that the peaks of the vertical 

Fraction of a Stride Fraction of a Stride
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forces, and the propulsion and braking forces matched the forces calculated by the 
equations. In addition the curves were stretched or compressed in time to match the new 
scaled time per stride (Figure 3-8). 

 

Figure 3-8. Example of scaling ground reaction force data.  
Subject B data was calculated by scaling Subject A data.  

Subject B is taller and heavier than Subject A. 
 

 Being able to scale the model and associated data was a significant improvement to 
the capabilities of the toolbox. With this ability, researchers will be able to simulate many 
more subjects and many more scenarios than they could perform through traditional 
experimental protocols in a laboratory. 

 

4. Development of Application Interfaces 

 The previous section described the process used to build models for inverse and 
forward analysis. In this section, developing a graphical user interface (GUI) for the model 
will be explained. Utilizing the lower extremity and head-neck models discussed in the 
above sections, the objective of developing the interface, the interface layout, and an 
example of stepping through the interface will be described. 

Fraction of a Stride
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4.1 Objective 
 A desktop application was developed for accessing the models developed with the 
NMS-Dynamics toolbox. The objective of the application was twofold. First the application 
would provide an interface to the lower extremity and head-neck models for simulating 
various scenarios. Secondly, the application interface would provide a user-friendly way to 
access the models. 

4.2 Layout and Development 
 For the application, a simple layout which stepped the user through the program was 
designed (Figure 4-1). The layout is divided into a number of steps. Initially the user is 
given the choice of loading a previous simulation project or starting a new one. For a new 
project, the next step is for the user to decide which model to use, and the file name and 
location for their simulation project. The user can also provide a project description for later 
reference. Then the user moves to the next step where the specific model parameters are set 
and the simulation is started. In the final step the user can graphically plot results from 
the simulation. 

 

Figure 4-1. Outline of steps involved with the  
NSM-Dynamics Analysis application 

  The application interface was developed to provide the user a quick and easy method 
for running simulations. The ability to save simulation projects allows the user to perform 
and compare different simulation scenarios. The step-by-step process helps the user setup 
the simulation properly, and the plots give the user immediate feedback about the results. 

4.3 User Interface 
 Illustrations of the application interface are presented to show its current standing. 
The first figure (Figure 4-2) shows the welcome screen to the NMS-Dynamics Analysis 1.0 

1. Select model 

3. Perform simulation 

2. Set model 
parameters 

4. View results 
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application. On the welcome screen, a description of the application and its capabilities are 
given. From this screen a user can exit the program, load a previous project, or start a new 
project. 

 

Figure 4-2. Welcome screen  
 When a new project is selected, the user is taken to a screen (Figure 4-3) where they 
select the model to simulate, determine the name of the project, and set the location for 
saving the results. A project description box is provided so that the user can describe their 
project for future reference. 
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Figure 4-3. Project configuration screen 
  

 After selecting the model and setting the file and directory information the user is 
moved to the next screen to specify the model parameters (Figure 4-4). At the top of the 
screen, the project file name is displayed along with the project description. Below that 
information, parameters specific to the model are presented for tuning. For example, the 
helmet mass for the subject can be set for the head-neck model. The simulation begins 
when the Run Analysis button is pressed. 
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Figure 4-4. Model specific screen to set parameters  
 

 When the simulation is complete the results screen specific to the model is shown 
(Figure 4-5). The user can use this screen to generate some basic plots of the results. The 
results are saved to the folder designated earlier by the user so that the data can be further 
examined by the user. 
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Figure 4-5. Model specific screen to display results 
 

 Additional features of the application include a file menu at the top of the screen. This 
menu allows the user to easily exit the program, open projects, and start a new project. 
Under the options menu, the default save directory for the result data can also be set. 



5. Summary 

5.1 Current Year Progress 
 In the Introduction section, the objectives for the current year were outlined. The first 
objective was to develop the ability to deploy a model as a standalone application. This 
objective was accomplished by compiling the model into an executable program and devel-
oping a graphical user interface to interact with the program. The second objective entailed 
developing a scaling method to estimate the kinematic and ground reaction force data of a 
subject based on that data from another subject. To scale the data needed for the calcula-
tions, regression equations from the literature were employed. The last objective was to 
improve the flexibility of the model building code by removing hard coded values and 
special case programming. The model building process was streamlined and is now a more 
efficient and robust process. 

5.2 Accomplishments 
 The objective of this current version of the NMS-Dynamics toolbox was to develop a 
set of basic tools that would allow one to rapidly build biomechanical models. To do this we 
have developed a basic set of elements to accomplish this task. The elements include a rigid 
body, a planar joint, viscoelastic joint properties, and a muscle model (Appendix A). 
Through the examples it was shown that the toolbox can solve inverse and forward analysis 
problems. 
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Appendix A. NMS-Dynamics Model Components 

A.1 Segments 
 The rigid body block (Figure A-1) can be used to represent a body such as a bone. The 
block contains a mass and inertia parameter. Each segment also has two muscle ports 
(MPort1 and MPort2) for attaching muscles. More muscles can be attached thorough the 
use of a mechanical branching bar. The segment can be connected to a joint block through 
the CS1 and CS2 ports. CS1 is a coordinate system with its location defined relative to the 
adjoining segment. CG is the center of gravity of the segment with its location defined rela-
tive to CS1. CS2 is another coordinate system with is location defined with respect to CS1. 
CSsen, which can be used for attaching a body sensor, is another coordinate system with its 
location defined with respect to CS1. To ensure muscles wrap over the segments properly, 
obstacle points can be input to the block and then passed through to the attached muscle. 

 

Figure A-1. Rigid body. 
 
A.2 Joints 
 The planar joint block (Figure A-2) allows for rotation about one axis and translations 
along the other two axes. The user can specify which axis rotates and which axes translate. 
The joint has two Sensor/Actuator ports which allow measuring or applying moments/forces 
or rotations/displacements to the joint. Sensor data including position, velocity, and reac-
tion force/moment are output through the Sensor Data port. 

 

Figure A-2. Planar joint. 
 



A.3 Passive Elements 
 
A.3.1 Spring and Damper Parallel (1 DOF) 
 The Parallel Spring and Damper block (Figure A-3) models a single elastic element in 
parallel with a single viscous element. Therefore it only outputs a force/moment signal for 1 
degree of freedom (DOF). The equation for each element is defined by the user and can be 
nonlinear. This block attaches to the Sensor/Actuator port of a joint block which provides 
the joint position and velocity information needed for the calculation. 

 

Figure A-3. Parallel spring and damper (1 DOF). 
 
A.3.2 Spring and Damper Parallel (3 DOF) 
 This block (Figure A-4) contains 3 sets of parallel elastic and viscous elements. This 
allows one to add passive properties to the Planar Joint block without combining 3 single 
DOF blocks. It attaches to the Sensor/Actuator port. 

 

Figure A-4. Parallel spring and damper (3 DOF). 
 
A.3.3 Spring and Damper Series (1 DOF) 
 The spring and damper in series block (Figure A-5) has a single elastic element in 
series with a viscous element. Consequently it only provides force/moment data for 1 DOF. 
The equation for each element is linear and is defined by the user. It attaches to the 
Sensor/Actuator port on a joint block. 

 

Figure A-5. Series spring and damper (1 DOF). 
 



A.4 Active Elements 
 The muscle block (Figure A-6) calculates the force generated by the muscle for a given 
length and activation. It then applies that force to the two segments connected by the 
muscle. The Base and Follower ports connect to the Muscle ports of two segments. The 
musculotendon force and length are outputted for debugging purposes. This muscle block 
also has the ability to wrap itself over one cylindrical obstacle. The location, orientation, 
and reference frame of the obstacle are input through the Ob data port. 

 

Figure A-6. Muscle. 
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on a wearable data logger. Analysis algorithms were implemented in companion software, 
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1. Introduction 

 Military physical training programs involve a number of activities to improve the 
health and performance of the soldier. A constant challenge is designing programs to 
maximize the individual’s performance while minimizing the risk of a training injury. 
Therefore to properly evaluate a training program, it is necessary to know the details of the 
program. These details include: type of activity performed, duration of the activity, and 
intensity of the training. Currently some information about training regimens is manually 
recorded. However the inconsistency of these records and the insufficient information at the 
level of the individual make it difficult to accurately model the effects of a training regimen 
on an individual. Therefore to develop models that will predict the performance ability and 
improvements of an individual it is necessary to have a method of measuring and recording 
the training regimen that an individual experiences. A mobile biomechanical measurement 
device would provide a method to address this necessity. 

 Through this project, a prototype device was developed to wirelessly measure the 
biomechanics of an individual during walking, running, and jumping. The Mobile Training 
and Exercise System (M-TES) consists of two ankle sensors and a data logging base station 
that are worn by the user. The system measures the activities of the user via the sensors 
and records the data to the memory on the base station. To examine the activities of the 
user, the data is downloaded from the base station to a computer and analyzed with the 
M-TES Analyzer software.  

 Within a gait laboratory, a researcher can measure many aspects of the individual, 
including: kinematics via an optical tracking system, ground reaction forces via force plates, 
and energy expenditure via a metabolic gas analysis system. These types of systems allow 
for very accurate measurements of the user during an activity, but they also restrict the 
activity to an idealized form. For example, a cyclist on a training bicycle in a laboratory 
does not have all of the external influences such as hills, wind dynamics, other cyclists, and 
spectators. Consequently, a challenge with biomechanical measurements is performing 
these measurements under realistic conditions.   

 Previous studies have demonstrated the feasibility of portable biomechanical 
measurements devices (Cardon and DeBourdeaudhuij, 2007; Esliger et al., 2007a; 
Karantonis et al., 2006c; Lau and Tong, 2007b; Tanaka et al., 2007). These devices have 
traditionally employed accelerometry to measure the activity of the individual. Basic 
systems utilized the accelerometers to quantify the activity level of the user (Esliger et al., 
2007b). For example, at low accelerations, the user is classified as inactive, at small 
accelerations the user is at a low activity level, at medium accelerations the user is at a 
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medium activity level, and at high accelerations the user is considered to be at a high 
activity level. This method provides a general description of the activity intensity level of 
the individual, but provides little information about the type of activity or the 
characteristics of the activity. 

 A better system utilizes the accelerometer data to classify the activity and calculate 
an intensity level for the activity (Karantonis et al., 2006b). With this type of system, 
activities such as walking, running, and jumping can be distinguished from each other, and 
whether the individual was running with low, medium, or high intensity can be 
determined. This system is very good for logging the activities of an individual and 
providing some information about their intensity level. However, details about their 
biomechanics are still lost. There is no means of reconstructing the elements of the 
movement needed for a detailed biomechanical analysis. 

 Consequently, a goal of the system developed was to retain sufficient information so 
that important elements of the movement could be reconstructed. Knowing these elements 
and how they differ between activities, the movement could be classified, the intensity level 
quantified, and biomechanical characteristics of the activity analyzed. For example, 
knowing the elements of each step during walking would allow for calculations of step 
length and walking velocity. Having acceleration measurements at heel strike and toe off 
could be used to estimate ground reaction forces.  

 The goal of developing the M-TES is to provide the ability to measure and record the 
activities of an individual in the field. The activities would include walking and running 
over different terrains and elevations, and jumping over obstacles. Some of the technical 
challenges for the hardware components included sampling the sensors sufficiently fast, 
having adequate bandwidth for transmitting data to the base station, and providing 
scalability so that more or different sensors could be added to the system. For the software 
components, the challenges were storing the data in an efficient manner and analyzing the 
data to properly reconstruct and classify the activities. 

 The requirements and challenges of the device will be further addressed in the 
following section. Then the specifications of the hardware and software components will be 
discussed. In the third section, data will be presented to illustrate the ability of the system 
to classify and reconstruct different types of movements. In the last section, a summary 
description of the device, its capabilities, and the future direction for development will be 
presented. 
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2. M-TES 1.0 System 

2.1 M-TES 1.0 System Configuration 

2.1.1 Overview 
 The M-TES system consists of two sensor units, a data logging base station, and a 
software program to analyze the recorded data (Figure 2-1). The two sensor units are worn 
on the ankles and each contains a biaxial accelerometer which measures accelerations in 
the vertical and forward directions. A force sensor is also attached to the sensor unit to 
measure the force under the heel of the foot. The data recorded by the sensor units are 
transmitted to the base station where they are stored. The base station employs flash 
memory to store the data until the data can be downloaded to a computer for analysis. The 
M-TES Analyzer program uses the data to reconstruct and classify the movements of the 
user, and calculate biomechanical metrics such as speed and stride length. 

 
Figure 2-1. Diagram of M-TES setup. 

2.1.2 Challenges 
 The technical requirements for a device with the above features include: 

1) Sample rate: A majority of human movements have frequency components below 
20 Hz, therefore the sample frequency of the sensors would need to be at least 
40 Hz to ensure the measured signal was not aliased. 

2) Communication protocol: Because the sensor data needs to be transmitted 
wirelessly to the base station, the sensor units need a radio transmitter with a 
short range for transmission but be capable of high data throughput. 

Wireless  
sensor Wireless  

data logger 



4 

3) Data logging base station: The base station needs to communicate wirelessly 
with the sensor units, store the data it receives, and communicate with a 
computer to download the stored data. 

4) Classification algorithm: The algorithm is required to distinguish walking, 
running and jumping. 

5) Data storage: Recording data for hours at sampling frequencies above 40 Hz 
leads to very large amounts of data (i.e., on the order of megabytes). Consequent-
ly a method for efficiently storing the data is necessary. 

6) Commercial off-the-self (COTS) components: The components need to be 
commercially available to reduce the cost of the device and to allow for flexibility 
of component substitutions. 

 Consequently, the challenge was finding the components and developing the 
algorithms to meet all of these requirements, while ensuring everything was integratable 
and that the cost of the device was reasonable. The final selection for the device components 
and the algorithm developed were able to address these requirements and in the following 
sections details about each component and the analysis software will be discussed. 

2.2 M-TES Hardware: Sensors and Base Station 

2.2.1 Motes and Wireless Sensor Network 
 Motes are small wireless sensors that receive and transmit various sensor data while 
using a minimal amount of power. They contain a microprocessor, A/D converters, sensors 
(type depends on the application), and a radio for wireless communications (Figure 2-2). 
Typically motes are deployed in remote areas to measure a signal where access is difficult 
or inconvenient. 

 Motes can communicate with other motes. Therefore when a number of motes are 
deployed over an area, each one can communicate with its neighbors. As a result a wireless 
sensor network (WSN) is formed that allows messages to be relayed between the motes. For 
example, a base station (typically a mote directly connected to a computer) at one end of 
this WSN can send a message to any one mote by having the intermediate motes relay the 
message. For the M-TES, Mica2Dot (Crossbow Technologies, www.xbow.com) motes were 
used for each sensor unit as the platform for attaching the accelerometers and the force 
sensor. The base station also contained a mote (Mica2, Crossbow technologies, 
www.xbow.com) for receiving and transferring the sensor data to the data logger for 
storage. 
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Figure 2-2. Mica2Dot and Mica2 motes. 

 

 For communication, the Mica2Dot motes used a radio frequency of 433 MHz, provided 
a 19.2 Kbaud data rate, and used the IEEE 802.15.4 standard for the communication 
protocol. The communication range of these motes in the outdoors is ideally 1000 ft  and 
during transmission the mote draws 25 mA. 

 Each mote contains a microprocessor with the TinyOS operating system, which allows 
a developer to program small applications that can run autonomously on the mote. The 
development language for these applications is nesC which has similar syntax to the C 
programming language, but is a structured component-based language. An application in 
nesC consists of a number of components which are linked together (Figure 2-3) and the 
application flow is more event driven than sequential. 

Mica 2 

Mica2Dot 
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Figure 2-3. nesC programming elements.  

Description of concepts involved with a structured component-based language, taken from 
Getting Started Guide, Rev. A, Crossbow Technologies Inc. 

 

 For the M-TES system, a nesC program for the sensor units was developed to sample 
the sensors at a specified frequency and then transfer the data to the base station when the 
data buffer on the mote was filled. For the base station mica2 mote, a nesC program was 
developed to receive the messages from the sensor units and to transfer the data to the data 
logger for storage. 

2.2.2 Accelerometers and Force Sensors 
 A biaxial accelerometer was attached to the mote to measure forward and vertical 
accelerations; and a force sensor was attached to measure the force applied by the foot to 
the ground. The accelerometer chosen was the Analog Devices ADXL210AE (Figure 2-4). It 
has a measurement range of ±10 g and a resolution of 2 mg at 60 Hz, which is sufficient to 
capture the accelerations during walking, running, and jumping. It also has a form factor 
and power requirements that allow easy integration with the Mica2Dot data acquisition 
board. 

 .   
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Figure 2-4. Analog Devices ADXL210AE accelerometer. 

 

 The force sensor implemented was the FlexiForce A201 sensor (Figure 2-5). This 
sensor has a sensing area of 0.71 cm2, a response time of <5 microseconds, and a 
measurement range of 0-4.4 N. Attaching this sensor to the mote required an amplifier 
circuit. By tuning this circuit appropriately, the measurement range of the sensor was also 
modified to ensure the forces encountered during walking, running, or jumping would not 
saturate the sensor readings. 

 
Figure 2-5. FlexiForce A201 sensor. 

2.2.3 Base Station 
 The base station for the M-TES is the Stargate (Crossbow Technologies, 
www.xbow.com), a single board computer with an Intel 400 MHz Xscale processor (Figure 
2-6). The main goal of the base station was to provide storage for the data being received 
from the sensor units, and a means to download the data to a desktop computer for further 
analysis. The Stargate has a small form factor, 8.9 cm by 6.4 cm. This is roughly the size of 
a PDA, so the unit could easily be worn by the user without interfering much with their 
mobility. For communication with the sensor motes, a Mica2 mote is attached to the 
Stargate to receive and send signals to the motes. The Mica2 mote is essentially the same 
as the Mica2Dot mote, but with a larger form factor. For storage, the Stargate has 64 MB of 
SDRAM, but it also contains a compact flash slot for increased storage capacity. With the 
compact flash slot more than 2 GB of storage capacity could added. The Stargate also has 
an Ethernet port for communicating via a network with desktop computers. This 
communication option allows for data to be downloaded to a computer that is located at a 
distance from the actual base station.  
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Figure 2-6. Stargate platform (processor board and connectivity board) 

 

 The operating system on the Stargate is Linux based which allows for c/c++ programs 
to be easily compiled and run on the platform. The current system has an application that 
receives the data from the sensor units and stores the data to the compact flash card for 
later downloading. 

2.3 M-TES Software: Analyzer 1.0 

2.3.1 Data Storage 
 As a result of the high sample rate, the amount of data acquired over an hour of 
exercise can be extensive. Past developers overcame this obstacle by calculating and storing 
average values. For example, if a device was sampling biaxial acceleration data at a sample 
frequency of 50 Hz then for each second the device would need to store 2×50=100 pieces of 
data. However, if the device first calculated the desired metric (e.g., walking speed) and 
then averaged those values over 1 second, then for each second the device would need to 
store only one piece of data. This method reduces the amount of storage needed, but it also 
looses some of the information obtained. For the M-TES, a goal was to retain the majority of 
data so that more advanced biomechanical analysis could be performed offline. Consequent-
ly, taking averages of the data or calculated metrics was not a viable option for reducing the 
data storage requirements. Therefore, it was necessary to find a data compression method 
for storing the entire signal. 
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 The Fourier transform (FT) was the method utilized with the M-TES to provide data 
compression. The transform is typically used to determine the dominant frequency 
components of a signal. By examining the transformed signal, the frequencies with the 
most power are the dominant ones and the frequencies with little power can be mostly 
ignored. A Fourier transformed signal is the same length as the original signal, and is 
symmetric about its middle. Also, the original signal can be regained by performing an 
inverse Fourier transform (IFT) on the transformed signal.    

 For the M-TES, the properties of the FT and knowledge about the frequency 
components of walking, running, and jumping were utilized to compress the data. The first 
step in the compression method entailed low pass filtering of the signal. Previous research 
(Karantonis et al., 2006a; Lau and Tong, 2007a) has found the frequency components of 
walking, running, and jumping to be below 20 Hz. Therefore the raw signal was initially 
low passed filtered at this cutoff frequency. The next step involved performing a FT on the 
signal. Because the FT signal is symmetric only the first half of the signal needed to be 
stored; and this reduced the required storage capacity by half. Additionally, the low power 
frequency components in the frequency ranges above the dominant frequencies could be 
ignored with only minor effects when the IFT was performed. Therefore a threshold 
frequency was determined for these higher frequencies and the FT values above this 
threshold level were effectively set to zero. By setting them to zero these data points could 
also be removed and replaced with a number indicating how many zeros were needed when 
reconstructing the full FT signal. Depending on the frequency components of the signal, 
this second reduction could reduce the storage capacity by another half. Therefore the 
storage capacity of the original signal would be reduced to a quarter of its original 
requirements. To regain the original data, the FT signal would be reconstructed by adding 
the necessary zeros and then adding in the symmetrical half of the signal. Performing an 
IFT on this reconstructed FT signal would result in a signal that was very close to the 
original signal, and with the regained signal advanced biomechanical analysis could be 
performed. 

2.3.2 Activity Classifications  
 Activity classification is an essential function of this system. Through classification 
algorithms, the M-TES did not only determine periods of activity from inactivity, but it also 
determined what activity was performed and the intensity of the performance. To analyze 
the recorded data, a 1 second window was employed. Therefore during each second of data 
the algorithms:  
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1) Determined if the user was active or inactive 

2) If active, characterized the type of activity (e.g., walking, running, jumping) 

3) Calculated activity metrics, (e.g., time of heel strike, walking velocity) 

 To separate activity from inactivity the algorithms calculated the magnitude of the 
acceleration vector and then took its derivative. If the slope was nonzero, then the user was 
active, otherwise the user was classified as inactive. A derivative method was used over a 
simple threshold method due to the effects of gravity and the changing orientation of the 
ankle worn sensors. Because the X and Y axes of the accelerometers rotated with the leg 
within the gravitational field, the angle between gravity and the axes was constantly 
changing. Therefore, at any static leg position the acceleration magnitude would be 
nonzero. Consequently a threshold for determining activity (the method commonly used for 
waist worn accelerometers) would not be proper, so a method using the derivative of the 
signal was developed. 

 With activity separated from inactivity, the next step was to classify the activities. 
The Fourier transform was used again to determine the frequency components of the 
signal. The signal was further filter-based on the frequency components determined by the 
FT. This smoother curve was initially used to determine if the user was jumping. For 
jumping the accelerations for the x and y directions tended to move in the same direction 
(i.e., both increasing or both decreasing), while for walking they moved in opposite 
directions (i.e., one increasing while the other is decreasing). With this knowledge the 
activity was separated into jumping or not jumping. To distinguish between walking and 
running, a threshold for the frequency of the movement was employed (Figure 2-7). 

 Knowing the activity, metrics about the activity could be calculated. For example, 
given the user was walking with a certain frequency and knowing the height of the user, 
the walking speed of the user could be determined. Similarly, using the times of toe off and 
heel strike, the amount of time in the air could be calculated and the height of the jump 
estimated. Because of ever improving classification and metric algorithms, the advantage of 
storing the complete data signal allows these types of analysis as well as future developed 
analyses to be performed without recollecting the data. 
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Figure 2-7. Example of raw and filtered data. (a) For the walking data, the 

acceleration peaks and troughs are out of phase. (b) For the jumping data the 
accelerations are in phase as the jump begins. 
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3. Sample Results 

3.1 Description of Tests (Walk, Run, Jump) 
 To investigate the performance of the M-TES a protocol was developed. The protocol 
consisted of separate walk, run and jump tests. The separate activity tests were used to 
develop the classification algorithms and calculate activity metrics. Two subjects performed 
the experiments and the results will be described in the sections below. 

3.2 Time Trace Measurements 
 In Figure 3-1 an example of a force measurement from the FlexiForce sensor is 
compared against the force measurements of a force platform. The FlexiForce sensor was 
placed under the heel of the subject, so it measures the points between heel strike and heel 
off. The force plate measured the force under the right foot of the subject throughout the 
entire stance phase. The FlexiForce data was able to signal heel strike. However, the 
measurements were not consistent in magnitude and the response time varied due to 
variations in heel strike between steps and damping caused by the cushioning of the shoe. 
As a result, the FlexiForce was measuring no zero forces during the swing phase of gait. 
Consequently, the accelerometers are a better choice for determining gait parameters. 

 
Figure 3-1. FlexiForce force measurements. (a) force plate measurement under  
one foot from heel strike to toe off (b) 3 full cycles of FlexiForce measurements 
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3.3 Accuracy in Biomechanical Parameters 

3.3.1 Activity Classification 
 In this section, data from a walking test is displayed along with the results from the 
classification algorithm (Figure 3-2). From these preliminary results, the algorithm did a 
satisfactory job at distinguishing the activity and key points (i.e., heel strike and toe off) for 
the activity. However, more experiments with an increased number of subjects would need 
to be performed to fully evaluate the robustness of the algorithm. 

  
Figure 3-2. Determination of transition points within a walking step 

3.3.2 Calculating Activity Metrics 
 For walking and running, the average speed of the subject was calculated as the 
distance from their starting point to the force platform divided by the time needed to reach 
the platform. The analyzer program calculated the velocity utilizing the acceleration during 
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stance phase and the leg length of the subject. By calculating the angular acceleration when 
the leg was vertical and double integrating, an angle of rotation could be determined. Using 
this angle and the length of the leg, a horizontal distance of movement could be calculated. 
By dividing this result by the time taken and multiplying by a scaling factor the horizontal 
velocity of the center of mass could be estimated. The average speed of the subject during 
the experiment was measured to be 1.26 m/s. The results from the analyzer program were 
1.12, 1.39, 1.09 and 1.3 m/s for each of the 1 second windows. The average of these numbers 
was 1.23 m/s, which is close to the true value. With more testing, the robustness of the 
algorithm will be tested and improved. 

 For jumping, the time in the air was calculated as the time between toe off and heel 
strike. These values were then compared against the toe off and heel strike times of the 
force platform for accuracy. The measured time in the air was 0.462 seconds. The calculated 
time was 0.44 seconds. In addition, if desired, the jump height could be estimated assuming 
the acceleration profile of the subject was not affected by any external factors beyond 
gravity. 



4. Summary 

 The goal of this project was to develop a measurement system that could be worn in 
the field for measuring an individual’s activity without interfering with the mobility of the 
user. The prototype system developed was the M-TES (Mobile Training and Exercise 
System). The current system consists of a data logging base station and two ankle sensors 
that are worn by the user. In addition to the devices, a software program was developed to 
analyze the data. The M-TES Analyzer program classified the activities of the user and 
calculated various activity metrics. 

 Through this initial development effort, it was shown that the M-TES is capable of 
recording, storing, and analyzing biomechanical data. Future efforts will increase the 
robustness of the device and the algorithms so that the M-TES can truly be utilized in the 
field. In addition, several more experiments will be performed to statistically demonstrate 
that the M-TES device and software are accurate and reliable. 
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Overview  
The Training, Overuse Injury, and Performance (TOP) Model is a software 
framework for assessing the effects of physical training on performance and 
injury. Because it is web-based, only an internet connection and web-browser are 
required. No software installation is needed. This software will: 
 

• Predict individual Army Physical Fitness Test (APFT) scores  
• Identify individuals who are at “high risk” of injury for a given training 

regimen 
• Recommend modified training regimens for individuals who are at high 

risk for injury 
• Compare training regimens for differences in both performance and injury 

outcomes 
 
The software interface is designed to allow users with different functional 
objectives to manage the program and acquire the results they desire in an 
efficient and user–friendly manner. Two different user types have been 
developed. Depending on the type of user, different levels of software 
functionality are available. The users have been divided in the following manner:  
 

Basic User Interested in comparing their individual performance progress and injury 
likelihood during BCT to their peers. The output displays their individual scores 
and the average scores of their peers. This user can not change the training 
regimen, but can enter and modify their anthropometric data and physical fitness 
test (PFT) scores. Likely Basic Users are individual soldiers.  
 

Mid-Level 
User 

Focused with the performance and injury outcomes of a small group of 
individuals (2-30) involved in a training regimen. The output identifies 
individuals at high risk for performance failure or injury. This user can modify the 
properties of the individuals in the group and the training regimen. Likely Mid-
Level Users are Drill Sergeants and fitness advisors. 
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Basic User 
Login To access TOP 1.1, point your web browser to the TOP 1.1 website, whose 

address is available from your commander. Enter your Username and Password in 
the appropriate fields and click on the Submit button. If an account does not exist, 
you can create one by clicking on Create User (Figure 1).  
 

 
Figure 1. The TOP 1.1 login window. 

 
To create a user, the following information is required: User Name, Password 
(length should be between 3 and 10 characters and not contain any symbols), First 
Name, Last Name, User Type (Basic User), Group ID, and Start Date. Group ID 
and Start Data are required and available from your commanding officer or 
equivalent. First and Last Names should be between 1 and 50 characters and 
should not contain any symbols. See Figure 2. 
 

 
Figure 2. The Create User pop-up window. 
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Program 
Setup 

After logging in, each of the 4 buttons in the main section leads to a window most 
of which require additional information. All buttons must be marked “Completed” 
before a training analysis can be performed. The analysis will predict your final 
physical fitness test (PFT) score and the likelihood of injury. The data required for 
the analysis is shown in Table 1. After all four sections are marked “Completed,” 
click on the Analyze button. 
 

Table 1. The following information is needed to create a Basic User. 

Medical History 
Age Years 

Gender Male or female 
Height Inches 
Weight Pounds 

Abdomen (males only) Measure in inches the abdominal 
circumference against the skin at the navel 
(belly button), level and parallel to the floor. 

Neck Measure in inches the neck circumference at a 
point just below the larynx (Adam's Apple). 

Hip (females only) Measure in inches the hip circumference by 
placing the tape around the hips so that it 
passes over the greatest protrusion of the 
gluteal muscles (buttocks) as viewed from the 
side. 

Forearm (females only) Measure in inches the forearm circumference 
by placing the tape around the forearm so that 
is passes over the thickest portion of the 
forearm. 

Wrist (females only) Measure in inches the wrist circumference by 
placing the tape around the area that is the 
thinnest.  

Fitness and Lifestyle Background 
How do you rate your current 

physical fitness compared to other 
individuals of your gender and age?

Select Excellent, Very Good, Fair, or Poor 

During the 2 months prior to military 
training, what was the average 
number of times per week you 

exercised, played sports, or 
participated in strenuous labor?

Select Never, Once or less, 2 times, 3 times, 4 
times, 5 times, 6 times, or 7 times or more.  

Have you ever taken diet pills to lose 
weight?

Select Yes or No 

Have you ever used laxatives to lose 
weight?

Select Yes or No 

Have you ever caused yourself to 
vomit to lose weight?

Select Yes or No 
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Physical Fitness Scores 

Date The date of the PFT 
Run Time The time of the PFT run in min:sec formula 

# SU The number of sit-ups or crunches done in the 
time allowed 

# PU The number of push-ups or pull-ups done in the 
time allowed 

PFT Type Select the type of PFT performed (IST, PFT, or 
Final PFT). Only an IST PFT is required.  

 
 

 
Figure 3. Basic User’s enter Physical Fitness Test (PFT) results in the above pop-up 

window. Scores are automatically calculated. 
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Figure 4. After completing the four sections, click “Analyze” to run the 

TOP 1.1 simulation. 
 

 
Results The results of the program are broken into three sections: Body Fat Standard, 

Physical Fitness, and Overuse Injury & Stress Fracture. Clicking on PDF Report 
generates a 2 page printable sheet that contains the results of the simulation and a 
FAQ section.  
 

Body Fat 
Standard 

This test uses current standards and calculation formulas to estimate weight and 
body fat (% fat) compliance (U.S. Army 600-9). “Estimated” is your estimated 
values, “Allowed” is the values you must be below to be in compliance, and 
“Difference” is calculated by subtracting the Allowed from the Estimated values. 
A positive difference means not in compliance.  
 

Physical 
Fitness 

Your predicted performance on each of the final test events (Run, Sit-ups, and 
Push-ups) is based on your initial fitness test results (IST), planned training 
regimen, and fitness profile. Your overall “Outlook” for each test is given. 
Possible values are Good, Medium or Poor and are also shown graphically. 
“Predicted Value and Score” are the model predictions. “Pass Requirement and 
Score” are also presented for convenience.  
 

Overuse 
Injury 

The graphs in this section show your likelihood of sustaining a lower body (legs 
and hip) overuse injury and stress fracture over the course of the training regimen 
specified. An overuse injury is an injury caused by repetitive motion. Common 
examples are tendonitis/bursitis/fasciitis, pain, and non-acute strains/sprains. A 
stress fracture is an overuse injury of the bone, caused by training harder than the 
bone is capable of handling. The most common stress fracture bone is the tibia 
calf bone. The percent likelihood of a typical (average) individual being injured 
from this training regimen is specified in black.  
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Figure 5. The Basic User Results page showing Body Fat Standard compliance, 

Physical Fitness predictions, and Injury likelihood.  
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Mid-Level User 
Login To access TOP 1.1, point your web browser to the TOP 1.1 website, whose 

address is available from your commander. Enter your Username and Password in 
the appropriate fields and click on the Submit button. If an account does not exist, 
contact your commander to create a Mid-Level User. 
 

Program 
Setup 

This software will allow you to view and analyze the predicted effects of different 
training regimens on performance and injury of a small group of individuals. To 
use this software, choose (1) a group of subjects, (2) a training regimen, and (3) 
items to analyze. Click on each of the grey section bars to make your selections. 
Additional instructions are given when each section is accessed. 
 

Groups  Select a group of individuals based on their Group ID. Individual performance 
and injury history can also be viewed and edited by clicking on the Subject 
Details button. The View/Edit button allows the Mid-Level User to modify the 
military branch, training type, training location, start date, and special group ID 
code.  
 

 
Figure 6. The Mid-Level Group tab is used to select different groups of subjects 

for analysis. Individual subject details can also be viewed and edited by  
clicking on the “Subject Details” button. 

 

Regimen Change or customize the planned training regimen. Clicking on the Modify button 
gives training regimen details where the amount of march, run, and conditioning 
drills can be adjusted. Adjustments are made as a percentage of a normal U.S. 
Army Basic Combat Training regimen on a weekly basis via sliders. Conform 
Modified Values saves changes and incorporates them into the prediction scheme.  
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Figure 7. The Mid-Level User Regimen tab is used to select different training 

regimens and make changes to the weekly amount of training. 
 

Analysis Specify the type of performance and injury outcomes to be predicted. There are 
three performance tests and two overuse injury outcomes that can be predicted. 
See Figure 8. Specific subjects (or all) can be selected for analysis. An analysis 
name can also be entered.  
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Figure 8. The Mid-Level User Analysis tab is where performance and injury models 

can be selected for use as well as specific individuals individuals. 
 

Results The results of the program are broken into three sections: Body Fat Standards, 
Performance, and Overuse Injury.  

 

Body Fat 
Standards 

This test uses current standards and calculation formulas to estimate weight and 
body fat ( % fat) compliance (U.S. Army 600-9).  

 

Performance The predicted performance on each of the final test events (Run, Sit-ups, and 
Push-ups) is based on initial fitness test results (IST), planned training regimen, 
and fitness profile for each individual.  

 

Overuse 
Injury 

This section shows the likelihood of sustaining a lower body (legs and hip) 
overuse injury and stress fracture over the course of the training regimen 
specified. An overuse injury is an injury caused by repetitive motion. Common 
examples are tendonitis/bursitis/fasciitis, pain, and non-acute strains/sprains. A 
stress fracture is an overuse injury of the bone, caused by training harder than the 
bone is capable of handling. The most common stress fracture bone is the tibia or 
calf bone. 
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Each results section contains a main summary line and a detailed tab section that 
is broken into 5 areas: Main Poor/High Risk, Borderline/Medium Risk, Poor/Low 
Risk, and Info N/A. The main summary line shows a green, yellow, or red color 
to indicate the average performance of all subjects in the analyzed group as well 
as the group’s average ± standard deviation. The Main tabbed section gives a brief 
description of the exercise or injury and the number of people that fall into each 
category. The remaining tabs list the specific individuals of the category and their 
predicted scores.  

 
 

 
Figure 9. The Mid-Level User results tab contains different sections for each model.  
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9Executive Summary 
 

 Data from trainees in basic combat training shared by investigators at the U.S. Army 

Center for Health Promotion and Preventive Medicine were analyzed to determine whether 

health risk behavior variables might improve the predictive accuracy of the Training, 

Overuse Injury, and Performance (TOP) models. Composite and single items from the U.S. 

Army Recruit Assessment Program (RAP) questionnaire were assessed. Test item cluster 

(TIC) analysis was performed with and without RAP variables so that prognostic accuracy 

from a traditional statistical method could be compared for prediction of injuries and 

physical performance deficits among trainees. Injuries considered include stress fracture, 

lower-body nonstress fracture overuse injury, and general nonacute training injuries. 

Physical performance was determined by the Army Physical Fitness Test (APFT).  

 Overall prognostic accuracy was not markedly improved when select RAP variables 

were included in the predictive models. Accuracy was >90% for predicting failure of APFT 

elements and for predicting stress fractures in females. Accuracy was about 85% for males 

and about 65% for females when predicting lower body overuse injuries (excluding stress 

fractures). Accuracy was about 55% for predicting general nonacute injuries in females. For 

all outcomes listed above, accuracy with models including RAP variables was not better 

than with models excluding RAP variable predictors. However, for predicting general 

nonacute injuries in males, prognostic accuracy was 76% without RAP variables and 

increased to 81% when the composite health risk factor of cigarette use was added to the 

model. 

 It appears from these analyses that health risk behavior variables may not 

meaningfully increase prognostic accuracy in the TOP models. However, a smoking 

predictor has the potential to improve predictive accuracy in the nonstress fracture overuse 

injury TOP model. Inclusion of smoking in the TOP model is therefore warranted. These 

analyses had a very limited purpose; findings should not be generalized beyond this 

purpose. The potential value of health risk behavior variables in predicting injury or other 

undesirable outcomes remains to be fully explored. 



9Contents 
 
   Page 
 
1. INTRODUCTION ..............................................................................................................................................1 
2. METHODS..........................................................................................................................................................2 
3. RESULTS ............................................................................................................................................................7 

3.1 FINAL APFT SIT-UPS................................................................................................................................11 
3.2 FINAL APFT RUN .....................................................................................................................................13 
3.3 STRESS FRACTURES ..................................................................................................................................15 
3.4 LOWER-BODY OVERUSE INJURIES (NONSTRESS FRACTURES) ...................................................................17 
3.5 GENERAL NONACUTE INJURIES ................................................................................................................20 

4. DISCUSSION....................................................................................................................................................22 
5. LITERATURE..................................................................................................................................................23 



9Tables 
 
   Page 
 1. Health Risk Behavior factor categories, the RAP questions used, and the scoring 

system. (From Chervak 2006). ......................................................................................................... 3 
 2. Select RAP survey items analyzed for significance in predicting performance and 

injury during BCT............................................................................................................................. 4 
 3. ICD-9 Codes used to classify types of injuries sustained in BCT. ................................................. 6 
 4. The logistic regression screening results for Health Risk Behavior factors and select 

RAP variables that are predictive of failing the final APFT Push-up event................................. 7 
 5. The TIC analysis results for predicting failing the final APFT Push-up event for males. .......... 8 
 6. The TIC analysis results for predicting failing the final APFT Push-up event for 

females. .............................................................................................................................................. 9 
 7. Cutoff values determined to maximize accuracy for the APFT Push-up event TIC 

analysis. ........................................................................................................................................... 10 
 8. The logistic regression screening results for Health Risk Behavior factors and select 

RAP variables that are predictive of failing the final APFT Sit-up event. ................................. 11 
 9. The TIC analysis results for predicting failing the final APFT Sit-up event for females. ......... 12 
 10. Cutoff values determined to maximize accuracy for the APFT Sit-up event TIC 

analysis. ........................................................................................................................................... 12 
 11. The logistic regression screening results for Health Risk Behavior factors and select 

RAP variables that are predictive of failing the final APFT 2-mile run event. .......................... 13 
 12. The TIC analysis results for predicting failing the final APFT 2-mile run event for 

males. ............................................................................................................................................... 14 
 13. Cutoff values determined to maximize accuracy for the APFT 2-mile run exercise TIC 

analysis. ........................................................................................................................................... 14 
 14. The logistic regression screening results for Health Risk Behavior factors and select 

RAP variables that are predictive of sustaining a stress fracture during BCT.......................... 15 
 15. The TIC analysis results for predicting a stress fracture during BCT for females. ................... 15 
 16. Cutoff values determined to maximize accuracy for the stress fracture TIC analysis............... 16 
 17. The logistic regression screening results for Health Risk Behavior factors and select 

RAP variables that are predictive of sustaining a lower-body nonstress fracture 
overuse injury during BCT. ............................................................................................................ 17 

 18. The TIC analysis results for predicting a lower-body nonstress fracture overuse injury 
during BCT for males...................................................................................................................... 18 

 19. The TIC analysis results for predicting a lower-body nonstress fracture overuse injury 
during BCT for females................................................................................................................... 18 

 20. Cutoff values determined to maximize accuracy for the lower-body nonstress fracture 
overuse injury TIC analysis............................................................................................................ 19 

 21. The logistic regression screening results for Health Risk Behavior factors and select 
RAP variables that are predictive of sustaining a nonacute injury during BCT........................ 20 



9 22. The TIC analysis results for predicting a general nonacute injury during BCT for 
males. ............................................................................................................................................... 20 

 23. The TIC analysis results for predicting a general nonacute injury during BCT for 
females. ............................................................................................................................................ 21 

 24. Cutoff values determined to maximize accuracy for the general nonacute injury TIC 
analysis. ........................................................................................................................................... 21 

 



 1 

1. Introduction 

 The U.S. Army Recruit Assessment Program (RAP) Pilot Study at Fort Jackson, 
South Carolina obtained health risk behavior data via a questionnaire completed by men 
and women entering basic combat training (BCT) between October 2002 and May 2004. 
Data collected included demographic information, work history, medical history, and 
measures of psychosocial attributes and health behaviors. Although over 35,000 trainees 
completed the RAP, we obtained linked RAP data, APFT data, and injury data only for 3 
battalions. In those battalions, 1,156 males and 746 females completed at least part of the 
215 question survey. Data in these battalions were collected between 21 Mar and 28 Aug 
2003. Linkage among BCT injury data, Army Physical Fitness Test (APFT) data, and RAP 
data was accomplished by investigators at the U.S. Army Center for Health Promotion and 
Preventive Medicine (USACHPPM) for subsequent analysis.  

 Previous use of the linked RAP dataset included an investigation of the association 
between health risk behavior and injury during BCT (Chervak 2006). Chervak used 
multivariate factor analysis and survival analysis to derive five individual health risk 
behavior indices (cigarette use, smokeless tobacco use, alcohol use, weight control practices, 
and diet/lifestyle choices) associated with injury. It was found that for males, those with a 
high or low combined index score had a greater chance of sustaining a BCT-related injury. 
Those with a high cigarette use score also were more likely to be injured. For females, 
cigarette and diet/lifestyle risks were associated with injury. The results suggest that 
behavioral risk factors contribute to the chances of injury during BCT.  

 While the previous study linked behavioral risk factors to injury, the definition of 
injury and analysis method were different than that used in the development of the TOP 
models. Also, the association between the APFT and behavior was not explored in the 
previous analysis. Thus, the purpose of this analysis was to determine if the five health risk 
behavior factors or other individual questionnaire items showed sufficient predictive power 
to warrant inclusion in the TOP model framework.  
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2. Methods 

 To determine the usefulness of the RAP questionnaire, we subjected the dataset to the 
same analysis as that which was used to develop the TOP models. A logistic regression was 
used as an initial screening tool to eliminate those measures that have no observed 
predictive value and reduce the chances of a Type I error (determining an association when 
none exists). Screening logistic regression models were developed using RAP variables 
alone without including other demographic or baseline performance variables. Two 
different sets of input/independent variables were used for the logistic regression models—
the Health Risk Behavior indices derived by Chervak (2006) using multivariate factor 
analysis methods (Table 1) and a select group of individual items from the RAP 
questionnaire that previous experience suggests would most directly be associated with 
performance and injury outcomes in BCT (Table 2).  

 To assess goodness-of-fit for the initial logistic regression screening, the Observed 
Response test was used. The test involves comparing the model’s predicted outcome versus 
the actual response. Each subject’s outcome and the model’s prediction are paired with 
another subject and the predictions are compared. A concordant pair is when both subjects 
are predicted correctly, a discordant pair occurs when both are predicted incorrectly, and a 
tie is when only one is correct. A model with a high percentage of concordant pairs and few 
discordant pairs is considered accurate and we assumed that if the number of concordant 
pairs was greater than discordant pairs, then the variables showed predictive value and 
were worth further consideration.  
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Table 1. Health Risk Behavior indices, the RAP questions used, and the scoring system. 
(From Chervak 2006).  
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Table 2. Selected RAP survey items analyzed for significance in predicting performance 
and injury during BCT.  

Gen4 Highest education 

Gen5 Marital status 

Smkever Smoked more than 100 cigarettes in entire life 

Smkpacks Number of packs smoked daily when you smoked regularly 

Alclstyr How often did you consume alcohol during the year before entering the military 

Alcabuse During the past year, how often did you consume 6 or more alcohol drinks in one 
sitting 

Eas24 Hours you sleep on most nights 

Eas28 Number of times each week you eat breakfast 

Seatbelt Do you wear a seatbelt when driving/riding in a car? 

Gen56 Has your physical health/emotional problems interfered with your social activities 
in the last year 

Gen63 Problems keeping your attention on any activity for long 

Gen68b Did your physical health limit you in any kind of work or other daily activities 

Gen69a Did your emotional health cause you to accomplish less than you would have 
liked 

 

 Logistic regression modeling was followed by Test Item Cluster (TIC) analyses to 
determine the most predictive and parsimonious sets of predictive variables with associated 
cut-off scores. Cut-off scores were chosen using receiver-operator curve analysis, which 
attempts to minimize the proportion of false positives by selecting a cut score with high 
specificity and high positive likelihood ratio. Additional details of this method can be found 
in Allison et al. (2006). Note that if the initial logistic regression found no significant 
measures, a TIC analysis was not performed. For the TIC analysis, those RAP variables 
that were found significant through the logistic regression screening process were added to 
those previously considered for the TIC from other datasets (height, weight, BMI, age, 
initial APFT results, self-reported activity level, and self-reported fitness level; see Table 3) 
to determine if the RAP variables were of greater significance compared to other readily 
available measures.  



 5 

Table 3. Additional data items considered for inclusion that were used in previous TIC 
analyses in predicting performance and injury during BCT.  

Height Stature (m) 

Weight Total body weight (kg) 

BMI Body mass index (kg/m2) 

Age Age (years) 

IST Push-up Total Number of push-ups performed during the initial AFPT 

IST Sit-up Total Number of sit-ups performed during the initial APFT 

IST Run Total Run time (sec) performed during the initial APFT 

PreAerobicDays Number of days/week participated in a sport/activity with sweating for 20 
minutes or more 

PreActLevel Self-rated fitness/health level 

 

 For this analysis, performance was defined as passing the final APFT for push-ups, 
sit-ups, and the 2-mile run. Three definitions of injury were used: stress fracture, lower-
body nonstress fracture overuse injury, and general nonacute training injury. See Table 4 
for ICD-9 codes used to categorize the injuries. Males and females were analyzed 
separately.  

 In addition, a separate TIC analysis was performed without the RAP measures to 
assess the effectiveness of the RAP measures by showing the amount of improvement in the 
TIC accuracy from these measures.  
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Table 4. ICD-9 Codes used to classify types of injuries sustained in BCT.  

717 719.05 722.2 727.2 734 846.3 

717.1 719.06 722.71 727.3 840 846.8 

717.2 719.07 723.1 727.62 841 846.9 

717.3 719.08 723.4 727.65 842 847 

717.4 719.09 724.2 727.66 843 847.1 

717.5 719.4 724.3 727.67 843.1 847.2 

717.6 719.41 724.4 727.68 843.8 847.3 

717.7 719.42 724.5 728.71 843.9 847.4 

717.8 719.43 724.9 729.1 844 847.9 

717.9 719.44 726.1 729.2 844.1 848 

719 719.45 726.2 733.1 844.2 848.5 

719.01 719.46 726.3 733.14 844.3 848.8 

719.02 719.47 726.4 733.15 844.8 848.9 

719.03 719.48 726.5 733.16 844.9 953.1 

719.05 719.49 726.6 733.19 845 953.2 

719.06 720.2 726.7 733.93 846 953.3 

719.07 722 726.8 733.94 846.1  

719.03 722.1 726.9 733.95 846.2  

All numbers in the table were used to specify general nonacute BCT injury. Italicized 
numbers correspond to stress fractures and bold numbers are nonstress fracture overuse 
injuries.  
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3. Results 

 The following tables describe the results of the analysis, including the logistic 
regression screen processes, the TIC analysis, and the cutoff values for the TIC-identified 
variables that maximize the predictive accuracy of the TIC model for the injury and 
performance outcomes. Note that the number of subjects (N) differed for each analysis 
because of incomplete questionnaires (subjects with missing data for a given analysis were 
discarded), which results in small changes in prevalence.  

 For the TIC result tables, Sens = sensitivity, Spec = specificity, PLR = positive 
likelihood ratio, NLR = negative likelihood ratio, Prev = prevalence, PpostTP = positive test 
post-test probability, NpostTP = negative test post-test probability, Table2x2 = contingency 
table, Prog_accuracy = prognostic accuracy.  

3.1 Final APFT Push-ups 

Table 5. The logistic regression screening results for Health Risk Behavior factors and 
select RAP variables that are predictive of failing the final APFT Push-up event.  

Ntotal Npos Nneg
Significant 
Factors* Prev Concord Tie Discord

Health Risk 
Behavior Factors M 889 62 827

WeightCntrl, 
Cigarettes, 

Alcohol
7% 86% 13% 0.50%

F 519 31 488 LifeStyle 6% 88% 11% 0.40%

Select RAP 
Variables M 723 49 674 gen4, eas24, 

gen5 7% 87% 13% 0.40%

F 431 26 405 None 6%
 

*See Table 1 and Table 2 for definitions. 
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Table 6. The TIC analysis results for predicting failing the final APFT Push-up event for 
males.  

 Males 

Name Health Risk 
Behavior Factors 

Select RAP Variables 

Sig. Factors* Push-up Total IST, 
Sit-up Total IST, 

Age, Run Total IST, 
WeightCntrl 

Push-up Total IST, Sit-up Total IST, Age, 
Run Total IST, PreAerobicDays, Height 

(No RAP variables found predictive) 

Num of 
Factors 

Any 2 or more Any 2 or more Any 3 or more 

Sens 0.194 0.468 0.065 

Spec 0.967 0.769 0.987 

PLR 5.82 2.02 4.90 

NLR 0.83 0.69 0.95 

Prev 0.07 0.07 0.07 

PpostTP 0.3 0.13 0.27 

NpostTP 0.06 0.05 0.07 

Table2x2 13 30 
54 870 

29 193 
33 642 

4 11 
58 824 

Prog_accuracy 0.9131 0.7480 0.9231 
*See Table 1 and Table 3 for definitions. 
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Table 7. The TIC analysis results for predicting failing the final APFT Push-up event for 
females. 

 Females 

Name Health Risk Behavior Factors 

Sig. Factors* Height, Push-up Total IST, Sit-up Total IST 
(No Health Risk Behavior Factors found 

predictive) 

Num of 
Factors 

Any 2 or more Any 3 or more 

Sens 0.179 0.063 

Spec 0.985 0.999 

PLR 12.05 67.25 

NLR 0.83 0.94 

Prev 0.07 0.07 

PpostTP 0.47 0.83 

NpostTP 0.06 0.07 

Table2x2 7 8 
32 529 

2 0 
37 537 

Prog_accuracy 0.9306 0.9358 
*See Table 3 for definitions. 
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Table 8. Cutoff values determined to maximize accuracy for the APFT Push-up event TIC 
analysis.  

Name* Cutoff 

Males  

Push-up Total IST < 0.5 reps 

Sit-up Total IST < 9.5 reps 

Age < 18.5 yrs 

Run Total IST > 570 sec 

WeightCntrl > 39.5 points 

PreAerobicDays < 4.5 days/week 

Height > 1.98 m 

Females  

Height > 1.78 m 

Push-up Total IST < 1.5 reps 

Sit-up Total IST < 0.5 reps 
*See Table 1 and Table 3 for definitions. 
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3.2 Final APFT Sit-ups 

Table 9. The logistic regression screening results for Health Risk Behavior factors and 
select RAP variables that are predictive of failing the final APFT Sit-up event. 

Ntotal Npos Nneg
Significant 
Factors* Prev Concord Tie Discord

Health Risk 
Behavior Factors M 889 16 873 None 98%

F 519 34 485 None 93%

Select RAP 
Variables M 723 14 709 None 98%

F 431 22 409 smkpacks 95% 90% 10% 0.20%
 

*See Table 2 for definition. 
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Table 10. The TIC analysis results for predicting failing the final APFT Sit-up event for 
females. 

 Females 

Name Select RAP 
Variables 

Sig. Factors* Sit-up Total IST, 
BMI 

(No RAP variables 
found predictive) 

Num of Factors Any 1 or more 

Sens 0.421 

Spec 0.979 

PLR 20.52 

NLR 0.59 

Prev 0.07 

PpostTP 0.59 

NpostTP 0.04 

Table2x2 16 11 
22 525 

Prog_accuracy 0.9425 
*See Table 3 for definitions. 

 

Table 11. Cutoff values determined to maximize accuracy for the APFT Sit-up event TIC 
analysis. 

Name* Cutoff 

Females  

Sit-up Total IST < 7.5 reps 

BMI > 31 kg/m2 

*See Table 3 for definitions. 
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3.3 Final APFT Run 

Table 12. The logistic regression screening results for Health Risk Behavior factors and 
select RAP variables that are predictive of failing the final APFT 2-mile run event. 

Ntotal Npos Nneg
Significant 
Factors* Prev Concord Tie Discord

Health Risk 
Behavior Factors M 888 49 839 WeightCntrl 6% 89% 10% 0.30%

F 517 50 467 None 10%

Select RAP 
Variables M 723 40 683 None 6%

F 429 43 386 None 10%
 

*See Table 1 for definition. 
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Table 13. The TIC analysis results for predicting failing the final APFT 2-mile run event 
for males. 

 Males 

Name Health Risk Behavior Factors 

Sig. Factors* Weight, Age, PreAerobicDays, Push-up 
Total IST, Run Total IST 

(No Health Risk Behavior Factors found 
predictive) 

Num of 
Factors 

Any 2 or more Any 3 or more 

Sens 0.152 0.043 

Spec 0.956 0.998 

PLR 3.5 18.48 

NLR 0.89 0.96 

Prev 0.05 0.05 

PpostTP 0.16 0.5 

NpostTP 0.05 0.05 

Table2x2 7 37 
39 813 

2 2 
44 848 

Prog_accuracy 0.9152 0.9487 
*See Table 3 for definitions. 

 

Table 14. Cutoff values determined to maximize accuracy for the APFT 2-mile run 
exercise TIC analysis. 

Name* Cutoff 

Males  

Weight > 113 kg 

Age < 19.5 yrs 

PreAerobicDays < 1.5 days/week 

Push-up Total IST < 9.5 reps 

Run Total IST > 790 sec 
*See Table 3 for definitions. 
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3.4 Stress Fractures 

Table 15. The logistic regression screening results for Health Risk Behavior factors and 
select RAP variables that are predictive of sustaining a stress fracture during BCT. 

Ntotal Npos Nneg
Significant 
Factors* Prev Concord Tie Discord

Health Risk 
Behavior Factors M 979 12 967 None 1%

F 637 38 599 None 6%

Select RAP 
Variables M 794 7 787 None 1%

F 531 34 497 gen5,gen4 6% 88% 12% 0.40%
 

*See Table 2 for definitions. 
 

Table 16. The TIC analysis results for predicting a stress fracture during BCT for females. 

 Females 

Name Select RAP 
Variables 

Omitted Select RAP Variables 

Sig. Factors* Push-up Total IST, 
Run Total IST, gen5 

Push-up Total IST, Run Total IST 

Num of 
Factors 

Any 2 or more Any 1 or more Any 2 or more 

Sens 0.075 0.625 0.025 

Spec 0.989 0.698 0.998 

PLR 7.14 2.07 16.65 

NLR 0.93 0.54 0.98 

Prev 0.06 0.06 0.06 

PpostTP 0.3 0.11 0.50 

NpostTP 0.05 0.03 0.06 

Table2x2 3 7 
37 659 

25 201 
15 465 

1 1 
39 665 

Prog_accuracy 0.9377 0.6941 0.9433 
*See Table 2 and Table 3 for definitions. 
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Table 17. Cutoff values determined to maximize accuracy for the stress fracture TIC 
analysis. 

Name* Cutoff 

Females  

Push-up Total IST < 3.5 reps 

Run Total IST > 1500 sec 

Gen5 5 (Divorced) 
*See Table 2 and Table 3 for definitions. 
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3.5 Lower-body Overuse Injuries (Nonstress fractures) 

Table 18. The logistic regression screening results for Health Risk Behavior factors and 
select RAP variables that are predictive of sustaining a lower-body nonstress fracture 

overuse injury during BCT. 

Ntotal Npos Nneg
Significant 
Factors* Prev Concord Tie Discord

Health Risk 
Behavior Factors M 979 136 843 Cigarettes 14% 74% 24% 2.00%

F 637 226 411 None 35%

Select RAP 
Variables M 794 109 685 gen5, alcabuse, 

eas28 14% 74% 24% 2.00%

F 531 191 340 smkpacks 36% 41% 46% 13.00%
 

*See Table 1 and Table 2 for definitions. 
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Table 19. The TIC analysis results for predicting a lower-body nonstress fracture overuse 
injury during BCT for males. 

 Males 

Name Health Risk 
Behavior 
Factors 

Select RAP 
Variables 

Omitted Health 
Risk Behavior 

Factors 

Sig. Factors* Age, Push-ups 
Total IST, 
Cigarettes 

Alcabuse, gen5, 
RunTotIST 

Age, Push-ups 
Total IST 

Num of 
Factors 

Any 1 or more Any 1 or more Any 1 or more 

Sens 0.51 0.125 0.047 

Spec 0.631 0.962 0.964 

PLR 1.39 3.3 1.29 

NLR 0.77 0.91 0.99 

Prev 0.14 0.14 0.13 

PpostTP 0.18 0.34 0.17 

NpostTP 0.11 0.12 0.13 

Table2x2 76 343 
72 587 

17 33 
119 837 

7 35 
143 936 

Prog_accuracy 0.6150 0.8489 0.8412 
*See Table 1, Table 2, and Table 3 for definitions. 
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Table 20. The TIC analysis results for predicting a lower-body nonstress fracture overuse 
injury during BCT for females. 

 Females 

Name Select RAP 
Variables 

Omitted Select RAP 
Variables 

Sig. Factors* Run Total IST, 
smkpacks 

RunTotal IST 

Num of 
Factors 

Any 1 or more Any 1 or more 

Sens 0.09 0.009 

Spec 0.961 0.999 

PLR 2.3 8.66 

NLR 0.95 0.99 

Prev 0.36 0.37 

PpostTP 0.56 0.83 

NpostTP 0.35 0.36 

Table2x2 22 17 
222 416 

2 0 
261 456 

Prog_accuracy 0.6470 0.6370 
*See Table 2 and Table 3 for definitions. 

Table 21. Cutoff values determined to maximize accuracy for the lower-body nonstress 
fracture overuse injury TIC analysis. 

Name* Cutoff 

Males  

Age > 36.5 yrs 

Push-up Total IST < 7.5 reps 

Cigarettes > 39.5 points 

Alcabuse 6 (Daily) 

Gen5 4 (Married but 
separated) 

Run Total IST > 685 sec 

Females  

Run Total IST > 1135 sec 

Smkpacks > 1 pack/day 
*See Table 1, Table 2, and Table 3 for definitions. 
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3.6 General Nonacute Injuries 

Table 22. The logistic regression screening results for Health Risk Behavior factors and 
select RAP variables that are predictive of sustaining a nonacute injury during BCT. 

Ntotal Npos Nneg
Significant 
Factors* Prev Concord Tie Discord

Health Risk 
Behavior Factors M 979 186 793 Cigarettes 19% 66% 31% 4.00%

F 637 286 351 Cigarettes 45% 32% 49% 19.00%

Select RAP 
Variables M 794 172 622 gen5, alcabuse 22% 61% 34% 5.00%

F 531 251 280 smkpacks, gen5, 
gen4 47% 34% 49% 18.00%

 
*See Table 1 and Table 2 for definitions. 

 

Table 23. The TIC analysis results for predicting a general nonacute injury during BCT 
for males. 

 Males 
Name Health Risk 

Behavior 
Factors 

Select RAP 
Variables 

Omitted RAP 
Factors or 
Variables 

Sig. Factors* Age, Run Total 
IST, Cigarettes 

Run Total IST, 
alcabuse, Age 

Age, Run Total 
IST 

Num of 
Factors 

Any 2 or more Any 1 or more Any 1 or more 

Sens 0.07 0.214 0.17 
Spec 0.982 0.897 0.911 
PLR 3.80 2.07 1.92 
NLR 0.95 0.88 0.91 
Prev 0.19 0.21 0.21 

PpostTP 0.47 0.36 0.34 
NpostTP 0.18 0.19 0.20 
Table2x2 14 16 

187 856 
46 83 

169 720 
40 78 

195 803 

Prog_accuracy 0.8108 0.7525 0.7554 
*See Table 1, Table 2, and Table 3 for definitions. 
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Table 24. The TIC analysis results for predicting a general nonacute injury during BCT 
for females. 

 Females 

Name Health Risk 
Behavior Factors 

Select RAP 
Variables 

Omitted RAP Factors or Variables 

Sig. Factors* Sit-up Total IST, 
Run Total IST, 

Cigarettes 

Run Total IST, 
smkpacks 

Sit-up Total IST, Run Total IST 

Num of 
Factors 

Any 2 or more Any 1 or more Any 1 or more Any 2 or more 

Sens 0.094 0.014 0.238 0.004 

Spec 0.944 0.999 0.853 0.999 

PLR 1.69 9.86 1.62 3.25 

NLR 0.96 0.99 0.89 1.00 

Prev 0.45 0.48 0.48 0.48 

PpostTP 0.58 0.90 0.60 0.75 

NpostTP 0.44 0.47 0.45 0.48 

Table2x2 29 21 
279 355 

4 0 
319 354 

85 55 
263 319 

1 0 
344 374 

Prog_accuracy 0.5614 0.5288 0.5577 0.5216 
*See Table 1, Table 2, and Table 3 for definitions. 

Table 25. Cutoff values determined to maximize accuracy for the general nonacute injury 
TIC analysis. 

Name* Cutoff 

Males  

Age > 27.5 yrs 

Run Total IST > 685 sec 

Cigarettes > 59.5 points 

Alcabuse 6 (Daily) 

Females  

Sit-up Total IST < 17.5 reps 

Run Total IST > 1500 sec 

Cigarettes > 49.5 points 

Smkpacks  2 packs or more 
*See Table 1, Table 2, and Table 3 for definitions. 
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4. Discussion 

 The TIC analysis revealed that for performance measures (APFT Push-up, Sit-up, and 
2-mile run), the inclusion of either the Health Risk Behavior factors or the selected RAP 
variables did not substantially increase prognostic accuracy. Thus, it is unlikely that these 
factors will be of use in the TOP performance models.  

 There is little evidence from these analyses that health risk behavior measures will 
meaningfully improve prognostic accuracy beyond that of existing models predicting injury 
or poor physical performance except for predicting general nonacute injuries for males. In 
this case (Table 23), there is a change in prognostic accuracy from 76% to 81% with the 
inclusion of the Cigarette Health Behavior Risk factor. There are several potential 
explanations for this finding. For males, the high use of cigarettes may be reflective of a 
more aggressive subject who is willing to take more risks with their health than the 
average recruit. Heavy smokers are also more prone to physiological ailments, including 
reduced bone strength, lung capacity, etc. Because cigarette use and other smoking 
measures were not significant predictors for the more specific injury categories (stress 
fractures and lower-body nonstress fracture overuse injury), this suggests that smoking 
may be a more important factor for injuries to the upper-body and back regions, areas 
where aggressive recruits might be more apt to overtrain and injure themselves. While 
additional analyses could support this theory, none of the current TOP models address 
these types of injuries. In addition, it should be noted that the association may be a Type I 
error; subsequent datasets may not support the use of the factor. Results from these 
preliminary TIC derivations have not been validated in any independent data set. 

 These analyses had a very limited purpose; findings should not be generalized beyond 
this purpose. The potential value of health risk behavior variables in predicting injury or 
other undesirable outcomes remains to be fully explored. 

 Despite the inconclusive findings, smoking was identified in the initial screening 
process for all nonstress fracture related injuries. This suggests that a smoking factor has 
the potential to improve predictive accuracy in the nonstress fracture overuse injury TOP 
model. Thus, while the increase in accuracy may not be great, we conclude that the 
inclusion of smoking in the TOP model is warranted. We will continue to look at other 
datasets for additional guidance. 
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